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ABSTRACT

The automated targeting of online display ads at scale re-
quires the simultaneous evaluation of a single prospect against
many independent models. When deciding which ad to show
to a user, one must calculate likelihood-to-convert scores for
that user across all potential advertisers in the system. For
modern machine-learning-based targeting, as conducted by
Media6Degrees (m6d), this can mean scoring against thou-
sands of models in a large, sparse feature space. Dimension-
ality reduction within this space is useful, as it decreases
scoring time and model storage requirements. To meet this
need, we develop a novel algorithm for scalable supervised
dimensionality reduction across hundreds of simultaneous
classification tasks. The algorithm performs hierarchical
clustering in the space of model parameters from histori-
cal models in order to collapse related features into a single
dimension. This allows us to implicitly incorporate feature
and label data across all tasks without operating directly in
a massive space. We present experimental results showing
that for this task our algorithm outperforms other popular
dimensionality-reduction algorithms across a wide variety of
ad campaigns, as well as production results that showcase
its performance in practice.

Categories and Subject Descriptors

I.5.4 [Computing Methodologies]: Pattern Recognition—
Applications
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1. INTRODUCTION
Online display advertising, (broadly speaking, the show-

ing of banner ads on websites) is a large and growing in-
dustry, with consumer brands expected to spend over $34
billion on display ads in 2013 [22]. The problem of targeted
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display advertising involves determining where, when, and
to whom to show a particular display ad on the Internet.

Display advertising decomposes roughly into two distinct
tasks: retargeting, which involves advertising to people who
have had some prior interaction with the brand (e.g., visiting
a brand’s website) and prospecting, which seeks to acquire
new customers by advertising to people without an observed
prior affiliation with the brand.

At m6d, we operate a large-scale, machine-learning-based
display advertising system that delivers tens of millions of
display impressions for hundreds of different advertisers ev-
ery day. Our goal is primarily prospecting, meaning that
we want to identify, for each brand, a set of previously un-
affiliated individuals who are most likely to respond to the
brand’s advertising. A response in our case is not a click but
rather a “post-view conversion,” where a user takes a brand

action (see below) within a given time period after seeing
the ad. In practice, this means that we score hundreds of
millions of Internet users as either “good” or “bad”prospects
for each of our client brands.

The central component of our targeting technology is a
massive-scale machine learning system [12, 16, 17] that si-
multaneously operates and autonomously updates thousands
of classification models in parallel. Our primary predictive
modeling learns directly from anonymized browsing history
of browsers that allow third-party cookies. An individual
data point, for the purposes of our system, is a browser

cookie. Whenever someone visits our website or interacts
with one of our data partners, we get the opportunity to set
a cookie on his or her browser. We use these same cookies to
maintain a partial history of the URLs on which we interact
with the browser, either through our own systems or those of
our data partners. Throughout the paper, we use the words
browser, cookie, or user to refer to an individual instance
of our cookie.

For the purposes of model-building, this history becomes a
massive, sparse binary feature space of hashed URLs. A user
gets 1 for all URLs in the cookie and 0 for everything else.
Currently, we track over 100 million unique URLs in the
system, any of which could be used for modeling. For most of
our models, the class label during training is simply a binary
indicator of whether or not the user has ever taken some
sort of brand action. This action is typically visiting the
brand’s home page, downloading target material, or making
a purchase from the brand’s site.

Our high-dimensional models work quite well (as judged
by our internal measurements and by clients’ comparisons



with other targeters [13]), but there are situations where
lower-dimensional models are preferable, such as:

1. Rare Events: For some of our models, positive-class
examples are very rare. The vast majority of people
have never even visited a brand’s site, let alone pur-
chased something. As a result, it is difficult to estimate
reliable model parameters in millions of dimensions.

2. Cold Start: We typically cannot observe brand ac-
tions until a campaign has nearly begun (the advertiser
has to place a pixel on their website). This exacerbates
the rare-event problem for our first models.

3. Overhead: High-dimensional models are expensive to
build and store. Lower-dimensional models are use-
ful when conducting complex analyses for which high-
dimensional models would unduly burden the system.

The goal of this work is to identify a good ‘generic’ lower-
dimensional representation of our high-dimensional feature
space that will be used across many different campaigns for
predictive modeling. Keep in mind that with insufficient la-
bels, supervised dimensionality reduction and feature selec-
tion is unlikely to succeed. Additionally, it would imply that
for each campaign we have to maintain a different feature
space which burdens the system even further. The exist-
ing literature provides a wide variety of unsupervised tech-
niques for dimensionality reduction in large data sets that
would be suitable. However, in our particular situation, we
have additional information that can be brought to bear: a
large library of historical models built on the same, massive
feature set. These models encode information about each
URL’s impact on conversion for hundreds of different cam-
paigns. It seems natural to use as much of this information
as possible.

To this end, we have developed a multi-task hierarchical
clustering scheme for dimensionality reduction. The algo-
rithm identifies closely related dimensions by finding clus-
ters in the space of model parameters from all of the mod-
els in our system. These clusters produce a much-lower-
dimensional space in which similar dimensions combine URLs
with similar predictive information (strength and direction
of affiliation with the class label) across all of our models. As
it turns out, models built in this lower-dimensional space are
nearly as informative as models built on the original high-
dimensional data. Furthermore, we show that our approach
outperforms several popular alternatives..

The remainder of the paper is organized as follows: Sec-
tion 2 gives a brief overview of dimensionality reduction
techniques and the particular techniques that we consider
in this paper. Section 3 describes our supervised multi-task
dimensionality reduction technique in detail. Section 4 ex-
perimentally compares our technique with several popular
existing techniques, and shows its performance within the
m6d production system, and Section 5 presents conclusions
and some observations on the nature of dimensionality re-
duction in large production data.

2. DIMENSIONALITY REDUCTION FOR

ONLINE DISPLAY ADVERTISING
The goal of dimensionality reduction is to take a high-

dimensional feature vector x = (x1 . . . xn) and project it into
a k-dimensional space, with k << n, such that the resulting
lower-dimensional vector x′ captures the vast majority of

the relevant information in x. Prior research has produced
a number of very popular techniques for dimensionality re-
duction (e.g. [6, 8, 9, 21]), and we cannot consider all of
them. Instead, we focus in particular on techniques that are
well-suited to our problem domain.

We prefer techniques that are feasible in large, sparse bi-
nary data. This rules out, for example, PCA [21] and ICA
[8], which require rescaling the columns to have zero mean.
Such mean-centering destroys the sparsity of the data, dra-
matically increasing the space and time required.

Additionally, we prefer techniques that will produce a sin-

gle low-dimensional feature space across multiple classifica-
tion tasks, since it is prohibitively expensive to maintain
thousands of projection matrices for thousands of models.
All unsupervised dimensionality reduction techniques triv-
ially satisfy this requirement, but it rules out many existing
supervised approaches [6, 9].

Subject to these constraints, we have experimented with
a number of different dimensionality-reduction approaches,
which we outline briefly here:

Feature Hashing: Perhaps the simplest way to reduce a
massive binary feature space is via feature hashing [20]. Fea-
ture hashing transforms a bag of words into a bag of hashed
IDs. Given a set of tokens and a hash function h(), we ap-
ply the hash function to each of the tokens and the new
feature space is simply the set of hashed values. Dimension-
ality reduction results from hash collisions. For example, if
a cookie contains {m6d.com, nytimes.com, nyu.edu}, and we
have h(“m6d.com”) = 6, h(“nyu.edu”) = 6 and h(“nytimes.
com”) = 8 then, in the new space, the cookie has values for
features 6 and 8. Hash functions are typically 32-bit or 64-
bit, and to project into an arbitrary k-dimensional feature
space, we compute h(·) mod k.

The method of [20] also employs a second one-bit hash,
which assigns a sign (1 or -1) to each URL. The new feature
space is integer-valued rather than binary, and example i’s
value for feature j in the new feature space is given by:

x′
ij =

∑

u|h(u)=j

h2(u). (1)

where the summation runs over all the URLs u in example
i for which h(u) = j.
Contextual Categories: The web has a number of sources,
both proprietary and free, that categorize specific web pages
by their content. These categories serve as content-based
groupings that can be used to reduce the dimensionality of
the data. For the purposes of this paper, we have obtained
two sources of category data: a freely available web ontol-
ogy called the Open Directory Project (ODP)1, as well as a
proprietary categorization from a commercial data provider.
With category data, our original feature space of URLs be-
comes a feature space of categories. A given browser gets 1
for any category in which he has visited at least one website
and 0 for all other categories.

Singular Value Decomposition: The reduced-rank sin-

gular value decomposition (SVD) approximates an m × n
data matrix X by a rank-k matrix X′, defined as the prod-
uct of three matrices:

X′ = UΣVT (2)

1www.dmoz.org



where U and V are m× k and n× k orthonormal matrices
of singular vectors respectively and Σ is a k × k diagonal
matrix of singular values.

SVD is theoretically attractive because it produces the
best (in the least-squares sense) reduced-rank approximation
to the original data, and recent work has led to fast, block-
wise algorithms for low-rank SVD‘[7] that can operate in a
distributed fashion on large data sets like ours.

The matrix UΣ forms the reduced-rank data set used
for classification. A new data set X2 in the original n-
dimensional feature space can be converted to its low-rank
representation by:

X′
2 = X2V (3)

SVD is unique among techniques that we discuss in that
it produces a dense output matrix rather than a sparse one.
The implications for storage and computability make this
approach less appealing to us, but the predictive perfor-
mance observed using SVD in recent data mining compe-
titions [10] on sparse data makes it an attractive technique
for comparison.

Supervised Clustering: Each of the prior techniques
will work for our particular problem domain, since they can
reduce dimensionality in large, sparse binary data. However,
as unsupervised techniques, they cannot incorporate one of
the richest sources of information that we have: the model-
ing experience on hundreds of campaigns over the years. We
develop in the next section a multi-task clustering approach
that utilizes this knowledge by using models’ parameters as
the features describing the URLs.

3. MULTI-TASK CLUSTERING
More so than in data mining environments where an objec-

tive performance metric can be optimized, the effectiveness
of clustering is driven by deliberate setup choices. The core
of clustering is the distance metric and with it the repre-
sentation of the entities of interest. We are trying to group
together URLs such that using only the groups retains the
maximal amount of predictive performance. Initially, there
are a number of ‘natural’ ways of thinking about the simi-
larity between websites:

• Similarity of a site’s content using, for instance, tf-idf
after crawling the page and identifying the contained
text. Aside from the obvious challenges of crawling
and extracting text (permissions and computational
effort), we would also need to account for the internal
structure of sites and aggregate their content in some
consistent way. Practically, m6d is neither willing nor
able to do so for a project that is meant to simplify
our computation.

• Co-visitation patterns of browsers visiting the sites:
Given our data sources, it is straightforward to derive
a co-visitation graph. Using some measure of overlap
between the audiences of two sites one could project
that there should be semantic relationships that sug-
gest some form of similarity. However, whether or not
this translates to predictive information is less clear.
Another issue is scale. Calculating overlap when the
(visitation) base rates vary by orders of magnitude is
known to be tricky [15].

m6d has another, much more relevant set of information
about URLs in our system: how they affected the conversion-

F1 F2 F3 F4 F5 F6 F7 F8
Task 1 1.3 0.9 1.1 0.1 -0.2 0 -2.3 -3.2
Task 2 0.4 0.5 0.2 -6.4 -5.3 -5.9 -5.7 -6.1
Task 3 1.9 2.1 1.7 -0.1 0.2 0.3 1.3 1.5
Task 4 -1.0 -1.2 -1.4 5.1 5.4 4.7 0.3 0.2

Table 1: Example representation where each feature
represents the coefficient of a linear model that was
estimated for a given task. We include here four
hypothetical tasks. The curious reader should be
able to identify 3 distinct groups of features (the
answer is in the text).

likelihood scores modeled across many past campaigns. It
is likely that future campaigns share similarities with those
of the past in terms of industry and product types. So in-
tuitively, URLs that consistently affect the predictions in a
similar way can be grouped together safely without losing
predictive information. Consider Table 1 as an example. It
shows the parameters of a linear model for 8 different fea-
tures on 4 different tasks and there are 3 intrinsic feature
groups.

3.1 Distance Measure
Having decided on the representation—using the param-

eters from previous modeling tasks as features, the question
of selecting a good distance measure is less difficult than for
a typical clustering task. We are looking to group features
with similar impact on the predictions across the different
tasks. While it is less important with our binary indicator
features, we would prefer a metric that is somewhat indiffer-
ent to the scaling of the features and mostly directional. In a
linear model if two features were nearly identical except that
one is a multiple of the other, the parameters are likely to be
similar subject to the scalar difference (the parameter scales
counter-proportional to the scaling of the feature). As a re-
sult we used correlation similarity (specifically 1-correlation
as the distance function). Looking at the example in Table 1,
the tree groups that become apparent using correlation sim-
ilarity are features 1-3, 4-6 and 7-8.

3.2 Hierarchical Clustering
There are a number of well-known clustering methods in-

cluding k-means, hierarchical clustering, and (also applica-
ble in this case) co-clustering. To maintain flexibility in the
following step of cluster assignment we choose hierarchical
clustering. Figure 1 shows an example result on a small
subset of 70 URLs.

The clustering for the production system was done for the
15,000 URLs with the highest visitation rates during a one-
week training period. We use URLs with the highest visita-
tion rates because these are the URLs whose coefficients will
have the least variance across all campaigns. The choice to
limit the clustering to 15,000 URLs is mostly due to mem-
ory constraints in R. If we ever want to increase the number
of URLs covered, a simple approach would be to assign any
new URL to the cluster with which it is most correlated. So
it is not strictly necessary to include all 100 million URLs
in the actual clustering algorithm. There is some danger in
including rarer web sites into the clustering step as their pa-
rameters are likely to suffer more from variance during the
prior model estimation step. Having a majority of entities



Figure 1: Small example of clustered URLs.

with basically random features would likely reduce the ef-
fectiveness of the approach. We use the parameters for 100
campaigns with most positive examples that were running
at the time. The parameters are estimated using a variant
of naive Bayes that calculates a likelihood ratio [14]. In pro-
duction, a large number of our models are built as logistic
regressions using SGD [3] for estimation. For clustering, we
deliberately use naive Bayes models as they maintain each
individual feature’s signal more distinctly. For example, if
there were a set of n URLs with nearly identical relation-
ships to the targets, the logistic models would adjust the in-
dividual parameters accordingly (ideally but not necessarily
reducing each by a factor of 1/n, depending on the regu-
larization), whereas the class-conditional independence as-
sumptions lead naive Bayes to overestimate the parameters.
While this may be detrimental to predictive performance, it
is beneficial for identifying similar URLs. Naive Bayes also
tends to produce stable parameter estimates, since each indi-
vidual parameter estimate unaffected by the others. The hi-
erarchical clustering was performed in R using 1-correlation
as the distance metric and the hclust package as shown in
Appendix A. The small dendrogram in figure 1 shows a
nice even breakup of the space. Upon investigation we find
many meaningful groupings. This confirms our initial intu-
ition that using the parameters from campaign models pro-
vides a promising representation that does not suffer from
size-induced artifacts so commonly observed in clustering.

Intuitively, the grouping should reveal both contextual
similarity and co-occurrence. One example is information
substitutes—some people read the financial section of the

NY Times and others the financial section of the Wall Street
Journal. Only a few read both. The clustering identifies
them as substitutes and by grouping them we improve the
sparsity and reduce variance. But while context could cause
content to cluster together, it does not have to be the case.
The connection is ‘discovered’ by the predictive modeling
and may work in a way we do not understand. Our notion
of context may be different from the indication of consumer
interest. In this sense, seeing www.toysrus.com and www.

birthdayexpress.com together indicates that the consumer
is probably in the market for children’s gifts. While the two
sites might have co-occurrence of people shopping around
(co-visitation), the intuitive ‘consuming intent’ relationship
between these sites can be observed by the clustering even
without co-visitation.

3.3 Cutting the Tree And Assigning URLs
The most common way to assign entities to hierarchical

clusters is to cut the tree at a suitable height. However, this
may not lead to the best set of features as some of the clus-
ters will have many fewer (and less commonly visited) URLs
than others. A good feature needs to have useful coverage.
Thus, rather than a static cutoff on the dendrogram, we de-
signed a recursive cut function that traverses the cluster tree
and cuts a branch once the URLs below reach a minimum
coverage (number of browsers visiting them). The code is
provided in Appendix A where the input data format has
the number of browsers for each site in the first column.
In essence, the recursive procedure attempts to balance the
sparsity and the similarity of the elements in the final clus-
ters. We assign a goal coverage of 1% resulting in a total of
4,318 final clusters, where each URL is assigned to exactly
one cluster.

3.4 Two Technical Notes
Let us quickly clarify how we convert the original features

(indicators of URL visitation) into the new feature space.
The two obvious options are: the count of number of origi-
nal URLs in each cluster (the sum of the original indicator
features), or the creation of another simple indicator when
the user visits at least one URL in the cluster. For our
production system we have chosen the latter as it is consis-
tent with the representation used by our other models. We
have never found increased predictive performance when re-
placing the indicators with counts or other more complex
expressions. Ultimately, keeping it simple also adds to the
robustness of the system implementation [17] and avoids po-
tential artifacts from the heavy-tailed Poisson distributions.
Furthermore, some of our models use L1 regularization, so
keeping the features on a similar scale is beneficial.

One more technical note is important. Clusters are con-
structed as a group of websites that consistently get similar
model parameter estimates across a wide range of tasks. By
grouping them as one feature, we force all of these web-
sites “into” the same parameter and that may induce some
bias in the individual estimates. On the other hand, the re-
duced dimensionality reduces the variance of the estimates
for the models built on the new clusters. Choosing to use di-
mensionality reduction always displays a preference for bias
over variance. It is an empirical question as to whether
proposed clustering approach is more effective at limiting
this bias compared to other approaches. We have not ex-
amined the bias/variance decomposition in detail—largely



because ours are ranking tasks, for which the decomposition
is non-trivial. We do believe that leveraging the learning
from ’similar’ tasks might indeed be beneficial, because we
minimize the bias by using other models to tell us which
websites can ’safely’ be put together without reducing the
predictive information content.

3.5 Related Work
Our clustering solution relates to a number of existing

techniques and strategies in machine learning.

• Stacking and Ensembles: We are proposing a 3-
step process where we first estimate a number of mod-
els across multiple tasks and use them for a second
modeling stage. The main difference between classical
stacking [4, 19] and our method is that we are NOT
using the predictions of the first level as features in the
next stage. Rather, we cluster the features based on
the learned models’ parameter estimates, and then use
the resultant clusters as the second-level feature space.

• Transfer learning: Transfer learning in the most
general sense [11] suggests leveraging knowledge de-
rived from one task onto a different one where either
the domain (feature space and sampling) or the depen-
dent variable are different. In this sense, our clustering
approach fits this definition very well. We utilize what
is informative across a variety of potentially similar
tasks to generate a new (simpler) feature space for the
next task.

• Multi-task learning: Being an instance of induc-
tive transfer, multi-task learning [5, 2] is also related
to our clustering-based design. We are exploiting the
commonality among a set a tasks (via the parameters
estimated for a common set of features) to build a
model for the task at hand.

• Hierarchical Bayesian Modeling: The intuition of
using insights from related tasks (transfer learning) has
also been used in a Bayesian framework to define mul-
tivariate Gaussian priors on parameter estimates [18].
The algorithm of [18] also uses other similar learning
problems to estimate the covariance of pairs of individ-
ual parameters. The main difference of our work is the
larger grouping of arbitrarily many features into a dis-
tinct set of clusters and a much stronger constraint of
enforcing essentially the same parameter rather than
just having a prior. The advantage of the more re-
strictive setting is the desired reduction of the feature
space and model size.

4. EMPIRICAL RESULTS
In order to demonstrate the utility of our proposed clus-

ter method for dimensionality reduction, we report three dis-
tinct evaluation settings. The first is a set of fully controlled
experiments where we compare our clustering approach to
the set of comparable techniques outlined in Section 2 ‘in
vitro’ under identical settings (training data, model estima-
tion, and campaign mix). The second scenario compares
our production models (models estimated using our produc-
tion system on potentially different date ranges) rather than
the controlled experiments. We are trying to answer the
question how much better the high-dimensional production
models perform. We compare models estimated on the clus-
ter and the original high-dimensional feature space ‘in vitro’

in a controlled sandbox (identical test set) used by m6d to
track the quality of our models internally. Finally we look
at the real campaign performance when we show ads to the
audience selected by the model in the m6d production en-
vironment for a small set of campaigns that were running
both cluster and high-dimensional models ‘in vivo’.

4.1 Controlled Experiments
In order to evaluate dimensionality-reduction algorithms,

we need to compare them with respect to the performance
of a particular classification algorithm. For the purposes of
this paper, we use one of our production algorithms: a lo-
gistic regression trained by stochastic gradient descent [3].
Given the speed and workload constraints in our production
system, more complex classifiers like random forests are gen-
erally not applicable, so we do not discuss alternatives here.

Experimental Setup:
We chose a set of 28 campaigns that are reasonably rep-
resentative of our overall advertiser mix and built separate
low-dimensional models for each campaign. We use real data
from seven days in January 2013 for training and the follow-
ing day’s data for evaluation.

For each campaign, we transformed both the training set
and the evaluation set into the different feature spaces de-
scribed in Section 2. For both contextual categories and
feature hashing, the transformation is trivial: for the cate-
gory data it is simply a lookup table, and for feature hash-
ing it is provided by the hash function (hash() in Python, in
this case). Recall from Section 3 that we only use the 15,000
most popular URLs in our system to train the cluster model.
For a fair comparison, we reduce the exact same 15,000-
dimensional feature space for all techniques. The transfor-
mation into the cluster space was described in Section 3.4.

For SVD, the transformation is derived from data, and we
learn the transformation from a subset of our negative-class
training data. Since we use the same negative set across all
campaigns, this results in a single transformation matrix.
Despite using the efficient stochastic SVD algorithm, sub-
sampling was necessary in order to run it within our memory
constraints.

There are exactly 4,318 dimensions in the low-dimensional
feature space produced by the clustering (and running in
production), so for comparison, we tried to get as close to
this number as possible with the other techniques. Since it
is trivial to hash into any number of buckets, we use exactly
4,318 features for the hash models. With Open Directory,
our existing dimensions map into 5,594 distinct groups, and
this is what we use. For the commercial category data, the
number is 1,183.

SVD is considerably more difficult. The algorithm of [7]
and its Hadoop implementation are relatively fast, but it
operates in blocks to control memory consumption. As a
result, computation time can be an issue. More constrain-
ing, however, is the production of the training and test sets,
where each combination of user and URL joins to k dif-
ferent factor values in order to produce the product XV.
Even after downsampling the training set to reduce compu-
tation time, it proved prohibitively expensive to expand the
feature set beyond 1,000 dimensions, as several different at-
tempts to scale up to 2,000 ran our machines out of memory.2

Whenever we present SVD results here, we use 1,000 dimen-

2This was run on a cluster of 30 machines, each with 8 cores
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Figure 2: Performance comparison between our algorithm and competitors across all 28 campaigns. Dots
above the line indicate superior performance for our clustering algorithm.

sions since that is the strongest performance we have. We
briefly explore the performance of lower-dimensional projec-
tions later in the paper.

Figure 2 compares the performance of our logistic classifier
on clusters against each of the other reduced feature spaces.
We report two performance metrics here: area under the
ROC curve (AUC) and lift at a threshold of 5%. This is
simply the number of positive examples in the top 5% of
model scores divided by the number that would be expected
from a random classifier (i.e., 5% of all positives). We often
report this number internally because it reflects a typical
campaign setup, where given a fixed budget that can reach
only a small proportion of the targetable population, m6d is
expected to return as many conversions as possible. All of
our performance estimates are averaged over 100 bootstrap
estimates in order to reduce the variance in the results.

Each plot compares the performance of our algorithm against
the performance of a single competitor across all 28 cam-
paigns as measured by either lift or AUC. Values above the
identity line indicate that our algorithm performed best and
values below the line mean that the challenger performed
best. Several conclusions are immediately evident from the
figure. First, our clusters outperform all of the other meth-
ods most of the time. Furthermore, when they do lose, it is
generally by a small margin.

The clusters seem to be stronger, relative to other meth-
ods, under lift than under AUC. This is perfectly fine for our
purposes, since performance on the highest-scoring browsers
is most important for our business.

In order to quantify the performance differences presented
visually in Figure 2, Table 2 summarizes the average perfor-

and 16 GB of memory. We distributed the computation
across dozens of machines (30,000 examples per input file; 65
reduce tasks) and limited each instance to 2 GB of memory.

mance and average relative performance, as well as statis-
tical interpretations of the performance differences. More
specifically, average relative performance is the average ra-

tio between our clustering and a competing method. We
report a difference in performance as a “win” if our clusters
perform significantly better than a competitor with 95% con-
fidence using means and variances estimated from the boot-
strap samples. Similarly, we report a loss if they perform
significantly worse.

The supervised clusters outperform all competitors, in
both lift and AUC, over our set of test campaigns. It has
more statistically significant wins, fewer losses, and higher
average performance. The most significant improvement is
relative to feature hashing, where we perform 42% better on
average.3 Even if we remove the most extreme outlier, the
number drops only to 35%.

SVD performs admirably in a much smaller feature space.
At 1,000 dimensions, SVD had the best relative performance
in terms of both lift and AUC and clearly outperformed
the commercial category feature space, which is its closest
competitor in terms of dimensionality. One possible expla-
nation is that we were not able to obtain contextual data
for all 15,000 of our original URLs from either our commer-
cial or free category sources, whereas SVD can make use of
any information that we feed into it. This is a fundamental
limitation of any third-party data source for dimensionality
reduction: the power of the low-rank feature space is limited
by the reach of the source data.

Even with this limitation, the human-curated contextual
categories from Open Directory perform very well, just 18%
behind our clusters on average. The Open Directory cate-

3Relative differences in lift are more meaningful to us than
relative differences in AUC. A 42% increase in lift means
42% more conversions at the same targeting budget.



(a) AUC

average average
performance relative win loss tie

improvement
Cluster 0.640 - - - -
vs ODP 0.619 1.034 24 2 2

vs Commercial 0.611 1.061 22 3 3
vs Hash 0.615 1.043 19 4 5

vs SVD (1000) 0.629 1.018 16 5 7

(b) Lift at 5%

average average
performance relative win loss tie

improvement
Cluster 4.024 - - - -
vs ODP 3.643 1.185 17 1 10

vs Commercial 3.195 1.403 24 2 2
vs Hash 3.035 1.428 26 1 1

vs SVD (1000) 3.539 1.162 20 4 4

Table 2: Comparison of dimensionality reduction techniques over 28 campaigns. Wins and Losses are com-
puted using 95% confidence intervals from bootstrap estimates.
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Figure 3: SVD-based model performance as a func-
tion of dimensionality in terms of average Lift over
28 campaigns.

gories were statistically indistinguishable from our algorithm
over 1/3 the time, but significantly outperformed our algo-
rithm only once. It is worth mentioning that the OpenDi-
rectory feature space is the largest in our study, which may
play a part in its strong performance.

To the best of our knowledge [10], SVD is typically used
to compress data into a much smaller dimensionality than
we have attempted here, but we found these extremely low-
dimensional models to be tremendously ineffective in our
domain. Figure 3 plots the average performance of the SVD
models against the average performance of cluster models as
we scale up the dimensionality of the SVD. SVD model per-
formance improves considerably from 125 features to 1,000
features (about 30% on average) and in lower dimensions
compares very unfavorably against our cluster method, shown
for reference as a black line in the figure.

4.2 ‘In Vitro’ Model Performance
We currently build 9̃00 cluster -based models in produc-

tion, serving hundreds of thousands of display ads per day.
Like all of our other models [17] they are built automatically,
with absolutely no human curation. While humans do ulti-
mately decide what proportion of each campaign’s budget to
allocate to a particular model, cluster models exist, and we
score users against them, for the majority of our campaigns.

One of the quality control tools in the m6d system [17] is
a ‘sandbox’ test dataset of random browsers for which we
track brand actions and evaluate our models. This happens
independently of whether or not we showed an ad for the
campaign. We have established previously [17] that perfor-
mance in this sandbox correlates with actual campaign per-

formance. The goal of this metric is to isolate the model per-
formance from the circumstances (such as bid price, scale,
or audience) of the campaign and allows for more rigorous
testing and quality control of the automated modeling.

Figure 4(a) summarizes the performance of all our cur-
rently active cluster models, compared against the corre-
sponding high-dimensional models, regardless of whether
they are currently being used for targeting. We report the
median lift at 1% over the 120 different models, since median
model performance is our preferred internal summary met-
ric of system performance. Cluster performance tracks fairly
consistently at 15%-20% below the performance of our high-
dimensional model. The average performance difference over
the entire time window is 17.4% and the median is 19%. In
summary, our low-dimensional cluster models achieve a sig-
nificant fraction of our main model’s performance, but the
full model has typically a distinct advantage.

4.3 ‘In Vivo’ Campaign Performance
Figure 4(b) shows median targeting performance, over all

active campaigns, of both the cluster model and our high-
dimensional production model over time. The metric here is
post-impression conversion rate relative to random target-
ing. In order to provide “control group” baselines for com-
parison, we continually serve a relatively small number of
untargeted (random) impressions for each of our campaigns.
The y-axis in Figure 4(b) is simply the (median) conversion
rate of the targeted population divided by the conversion
rate of the untargeted population. The plot runs from Oc-
tober 2011 to February 2013, and the big increase in cluster
performance corresponds to a redefinition of the underlying
clusters. The main difference between Figures 4(a) and 4(b)
is that since the latter shows actual targeting performance,
it only includes models that actually delivered impressions
in the wild. As a result, models that are allocated zero
targeting budget, presumably due to poor performance, are
excluded.

While the previous ‘in vitro’ results depend only on the
quality of the model, the ‘in vivo’ performance of relative
post-impression conversion rates depends on many other fac-
tors, including the price that we bid for a particular cam-
paign, the level of competition for good browsers, and the
scale of the campaign. It is interesting to observe that while
our high-dimensional model clearly outperforms the clus-
ter model on average ‘in vitro’, the difference diminishes
considerably after taking into account our human budget-
allocation decisions in the time period after the most recent
re-clustering was done.4 Here we see evidence of the cam-
paign managers’ ability to ’cherry pick’ only the best models

4The clustering itself runs infrequently in production.
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Figure 4: Median model performance over time across all active campaigns.

based on their historical performance, and in particular to
use cluster models only when they perform well.

5. CONCLUSION AND DISCUSSION
We present an algorithm for supervised, multi-task dimen-

sionality reduction using hierarchical clustering and demon-
strate its effectiveness in both laboratory and production
environments. In particular, we show that classification
models built in the low-dimensional space derived by our
algorithm perform nearly as well, in production, as models
trained on a massive feature space of about 30 million URLs.
Additionally, we show that our algorithm outperforms other
reasonable alternatives for classification in high-dimensional
sparse binary data. In the course of this study, we have ex-
perimented with a variety of dimensionality reduction tech-
niques in a wide variety of classification scenarios. In the
process, we have noticed a number of implementation issues
that may be of interest to practitioners.
Feature hashing is extremely fast and very easy to imple-
ment, but not really suitable for dimensionality reduction in
our case. Most applications of feature hashing (e.g., [1]) hash
into a much larger feature space than we have used here. It
is possible that our 15,000-dimensional feature space used
for clustering is not sparse enough for the collisions induced
by hashing to be harmless.
Singular Value Decomposition performs reasonably well,
even though we never reached 4,000 dimensions. It is inter-
esting to note that while prior studies [10] have reported
success reducing to much smaller spaces, we see consider-
able benefit in going all the way to 1,000 dimensions.

However, it became clear over the course of the study that
SVD would be very difficult to implement in our production
system. Transforming our training data into the learned
feature space requires a massive database join that takes
hours even when distributed across dozens of machines. Fur-
thermore, the resulting training data files (the input to our
learning algorithm) are huge compared to what we usually
encounter (1,000 nonzeros per example, compared to 20 or
30 in a typical sparse model). This dramatically increased
the strain on the system in terms of the time it takes to
train models, the disk space used to store input files, and
the I/O demands that we place on the system. Scoring new
browsers against existing models requires this same expen-
sive transformation, which severely limits the ability to keep
scores up-to-date.

One of the key features of our targeting system [17] is
that we continuously and autonomously rebuild thousands
of classification models in order to keep pace with changes in
people’s browsing behavior. Furthermore, we are constantly
re-scoring browsers in order to incorporate the newest infor-
mation from the browser’s cookies. As such, an approach
that dramatically increases training or scoring time is unde-
sirable. Our results may provide further support the contin-
ued investigation of SVD for situations where model-building
is infrequent, the number of models to build is small, and
near-real-time scoring is not required.
Category Data is unique to our domain (learning from
web histories), but is not totally unreasonably to include,
because there are a lot of similar applications where people
learn from web histories or web traversal patterns. Our re-
sults indicate that human-curated category data have some
promise as a proxy for the individual URLs themselves, but
such data will always be limited by the completeness of the
associated database. Furthermore, the effective incorpora-
tion of such data is not necessarily trivial. For example,
the site that we know as health.yahoo.net is encoded in
OpenDirectory as health.yahoo.com. By contrast, auto-
mated techniques like hashing, SVD, and our own cluster
algorithm utilize data we already have.

In summary, the designed cluster approach shows better
predictive performance compared to any of the (feasible) al-
ternative dimensionality reduction approaches. The reduc-
tion in predictive performance in many campaigns is limited
compared to using the full models with two to three orders
of magnitude more parameters. Due to their lower dimen-
sionality, cluster-based models are notably more efficient to
build and maintain and serve in our system. Further, the
clusters themselves can provide additional insights to the
brands (an interesting direction for future research).
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APPENDIX

A. CLUSTERING R CODE

size=dat[,1]

dat[is.na(dat)]=0;

co=cor(t(dat[,2:ncol(dat)]),use="pairwise.complete.obs")

co[is.na(co)]=0;

cl=hclust(as.dist(2-co))

mergesize=1:(nrow(dat)-1)

mergesize[]=0

for (i in 1:(nrow(dat)-1)) {

c1=cl$merge[i,1]

c2=cl$merge[i,2]

if (c1<0){c1s=size[-c1]}else{c1s=mergesize[c1]}

if (c2<0){c2s=size[-c2]}else{c2s=mergesize[c2]}

mergesize[i]=c1s+c2s;

}

extract=function(ind,clusterid) {

if (ind<0){res[-ind,2]<<-clusterid}

else {

extract(clu[ind,1],clusterid)

extract(clu[ind,2],clusterid)

clu[ind,3]<<- floor(maxsize)*100

}

}

clu=cbind(cl$merge,mergesize)

res=dat[,1:2]

res[,2]=0

i=nrow(dat)-1

n=0;

while(i>0) {

if (clu[i,3]<maxsize) {

n=n+1;

extract(i,n);

}

i=i-1;

}


