
Abstract

Many firms depend on third-party vendors to supply data for commercial predictive modeling applications. An
issue that has received very little attention in the prior research literature is the estimation of a fair price for
purchased data. In this work we present a methodology for estimating the economic value of adding incremental
data to predictive modeling applications and present two cases studies. The methodology starts with estimating the
effect that incremental data has on model performance in terms of common classification evaluation metrics. This
effect is then translated into economic units, which gives an expected economic value that the firm might realize
with the acquisition of a particular data asset. With this estimate a firm can then set a data acquisition price that
targets a particular return on investment. This article presents the methodology in full detail and illustrates it in
the context of two marketing case studies.

Introduction

In commercial predictive modeling applications, data

almost always comes at a price. This is certainly true in many
marketing scenarios where companies can purchase con-

sumer data from third-party vendors. A common question

for managers and data scientists building predictive systems

is, ‘‘How much is a particular set of data worth?’’

Most data vendors sell data at a fixed price and leave it to the

buyers to determine if the data holds enough value to justify

that price. Despite the prevalence of this problem in data-
driven businesses, there is very little research to guide buyers

in how to effectively price available data sources. A study by

the Organization for Economic Cooperation and Develop-

ment1 surveys several methods for determining the eco-

nomic worth of a data point, but these are generally framed

from the seller’s perspective (such as using market clearing

price or total revenues divided by total data points). From

the buyer’s perspective, the true value of data should be a
function of its ability to predict future outcomes and not just

explain the past.2 In this regard, it is important to formulate

the problem of data valuation using the tools of predictive

modeling.

In this article, we show how common predictive modeling
metrics can be expressed in terms of the expected economic

gain or loss (value) of taking some action based on the pre-

diction a model makes on an instance. With these metrics

translated into economic units, we can show how changes in

these metrics, induced by adding data, relate to the value

created by such data. Once we can quantify how new data

might change the expected value of applying a predictive

model, we can then make better managerial decisions on what
return on investment (ROI) the new data might generate.

Our data valuation methodology works by turning prediction

into action and then evaluating the economic impact of those

actions. New data changes how we might act on an instance,

and there are economic implications to that change of action.

We propose that the value of a data point should be related to

this change, and our method is designed to express this in a
mathematical way. We introduce our methodology from the

point of view of general predictive modeling and then

BIGGER IS

BETTER, BUT

AT WHAT COST?
Estimating the Economic Value of

Incremental Data Assets

Brian Dalessandro, Claudia Perlich,

and Troy Raeder
Dstillery, New York, New York

ORIGINAL ARTICLE

DOI: 10.1089/big.2014.0010 � MARY ANN LIEBERT, INC. � VOL. 2 NO. 2 � June 2014 BIG DATA BD87



illustrate it using two case studies from real-world data sets.

The first covers a recurring data acquisition decision by

Dstillery, an Internet display advertising firm (and the au-
thors’ present affiliation). The second example uses data from

the 1998 ACM SigKDD conference data mining competition

and explores the data valuation process for a charity’s direct

mail campaign. In both examples, we price externally avail-

able data under two scenarios: (1) where proprietary data is

available; (2) where it is not. We find

that the predictive power of external

data available for purchase changes
dramatically in the presence of use-

ful proprietary data, and the price a

firm should be willing to pay for

such data changes accordingly.

Related Work

The value of data in a nonmonetary

sense has been considered in many

disciplines, including statistics, ma-

chine learning, and predictive modeling for different sce-

narios:

� Feature selection assesses the value of existing features

and considers the impact of removing them for the

sake of either model performance or parsimony.3,4

� Learning curve analysis focuses on how having more

examples (features plus labels from the same distri-

bution) affects the model performance.5,6

� Active learning aims to selectively acquire training

labels for supervised learning in a way that maximizes

performance gains while minimizing label acquisition

costs.7

� Active information acquisition considers the selective

purchase of features during both training and model

use.8

� Cost-sensitive classification aims to determine classi-
fier thresholds that minimize the expected economic

costs of applying the classifier.9–11

In nearly all cases of existing research, the value of data is

defined with respect to its impact on some model perfor-
mance metric rather than the monetary implications of the

decision being made using the model.8 The exception is with

cost-sensitive classification, which considers the costs of dif-

ferent types of classification error and proposes schemes to

minimize these costs. Our process for estimating the value of

data combines the economic elements of cost-sensitive clas-

sification with methods common in feature selection and

active information acquisition.

In this work, we aim to estimate the expected economic

impact of straightforward cases of feature acquisition. We

link improved model performance to monetary gain by

connecting common performance metrics to monetary units.

This enables us to explore the full impact of data acquisition

on revenue and profit, which informs strategic decisions

during negotiations with data providers.

Estimating the Value of Data

The process of quantifying the monetary value of data

involves (1) framing the problem, that is, defining the

mechanism for translating model

predictions into decisions/actions and

associating different costs/payoffs de-

pending on the various outcomes; (2)
identifying an appropriate nonmon-

etary performance metric for a given

application; and (3) defining a mech-

anism for quantifying the impact that

an incremental data unit has onmodel

performance for the (holdout) use

cases. These steps are detailed in the

next few sections and then illustrated
with two cases on real data.

Framing the problem
We narrow the scope of our analysis to applications involving

tasks with binary outcomes (e.g., the customer responds to an

offer or not) with models that predict a continuous score

(i.e., the probability of one of the two outcomes). We first

formally define a classifier F as a continuous scoring function

ŝ¼ g(X) (for now we are agnostic to the choice of scoring

function), a threshold k, and a binary indicator function
Ŷ ¼ I(ŝ > k) that assigns a class (which is linked to an action)

to a given instance based on its feature vector X.

There are many suitable evaluation metrics for the type of

classification system defined above, and the appropriate

evaluation metric is problem dependent. The exact use of the

model is the defining factor in making this choice, and it also

influences our economic analysis of the problem. The fol-
lowing list provides some examples of common economic

applications of classification systems:

1. With a fixed budget, take action on exactly T instances.

This is a scenario in which a classification system is used
to define a ranked list, and the classification threshold k

is chosen to classify exactly T instances as positive. The

objective in such a scenario is to maximize the number

of true positives (TPs; instances that indeed were of the

positive class) in the top T instances. The appropriate

metrics are precision (percentage of TP examples in the

list of P instances) or lift (relative number of TPs

compared to the number of expected TPs expected at
random, which is equivalent to a normalized precision

measure). The economic interpretation of this strategy

is to maximize revenue given a fixed cost of action.

2. Given an open budget, take action while the expected

benefit of action is above some minimum threshold

‘‘OUR DATA VALUATION
METHODOLOGY WORKS BY
TURNING PREDICTION INTO

ACTION AND THEN
EVALUATING THE ECONOMIC
IMPACT OF THOSE ACTIONS.’’
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(e.g., cost or profit maximization). This is again a sce-

nario where a ranked list is appropriate (but not nec-

essary). The classification threshold for the action can
be set by choosing k such that E[value] > d, and ap-

propriate metrics would be area under the ROC curve11

(AUC) or log-likelihood score.

3. Given a ranked list, choose a threshold k such that

an exact number of TPs has

been acquired. In this scenario,

the appropriate metric is re-

call (formally, the percentage
of positives above k), and the

economic interpretation is to

minimize the cost of acquiring

a set number of TPs.

4. Apply 1 and 3 above, but with

uncertainty about the budget.

The ranking model is built in

advance, but the budget, which is a determining factor
of the classification threshold k, is not set, and it is

assumed to take on arbitrary values with equal likeli-

hood. In these cases, again AUC is an appropriate

metric.

Let m(D, ŝ, Ŷ ) be an evaluation function that computes some

appropriate evaluation metric (e.g., precision, recall, or AUC)

on a holdout data set D using the output of the classifier F.

Our first question of interest is, ‘‘How does incremental data

affect m(D, ŝ, Ŷ )?’’

We first answer this by defining exactly what we mean by
incremental data. Let D be an N·M + 1 data matrix that

consists of N examples, M features, and an outcome Y. We

can partition our matrix as follows:

D¼ [XBL X Inc Y ]

The superscripts BL and Inc indicate disjoint sets of features/

columns, and each can be of any arbitrary dimension. As a

result, M =MBL
+MInc. Let DBL be a baseline data matrix that

consists of only baseline features and the target [XBL Y]. Let
DInc be a new data set that includes DBL but is augmented by

the columns XInc.

Our objective is to measure the impact of adding this new

XInc data to our evaluation metric. We define a quantity that

represents the counterfactual (the effect on our metric of the

incremental data).

Dm¼m(DInc, ŝInc, Ŷ Inc)�m(DBL, ŝBL, Ŷ BL)

In defining Dm, we assume that D, ŝ, and Ŷ are out-of-sample

(not used for model training), and that the same features
used in training are available for evaluation as well. We also

point out that with the augmented data set, we have a scoring

model and as a result a new classifier, which we have iden-

tified with the appropriate superscripts.

Counterfactual analysis has long been used as the default

tool for measuring causal relationships in both experimental

design and observational studies.12–14 The use of this method

has long been a standard for feature selection,3 feature im-

portance,16 and active learning7 ap-

plications, and is even built into

commonly used training algorithms.17

We rely on this tool based on its
extensive support in the literature

and its extensibility to economic anal-

ysis of machine learning metrics.

Intuitively speaking, we are simulat-

ing what would have happened to

the model performance if we had

had the incremental data bought

already. This analysis assumes that the data is available at
no or limited cost for a trial before making the final pur-

chase decision.

Classification metrics in monetary terms
For any of the above economic applications, we need a way to

express the expected economic value of taking an action for

an instance as a function of Dm. We start by considering the
confusion matrix derived from comparing the predicted class

with the actual class/outcome of the instance in the set of

actions based on a cutoff k.

We generally assume that a true positive (TP) (the number of

positives above k), false positive (FP, the number of negatives

above k), false negative (FN, number of positives below k),

and true negative (TN, number of negatives below k) have
a constant cost or economic gain associated with them,

which we represent in the cost–confusion matrix of Figure 1.

We admit that accurately specifying the figures in the cost–

confusion matrix is often a nontrivial task, but for now we

assume that these are known.

We next define a value EF[Vi], which is the expected value of

applying our classifier to a test instance i. EF[Vi] is a real
valued quantity that has units in some form of tangible

currency. We focus our analysis at the instance level to de-

couple the size of the classification application from the

classification of particular instances. Our goal is to express

EF[Vi] in terms of our evaluation function m(D, ŝ, Ŷ ) so that

we can ultimately express the change in expected value

(DEF[Vi]) as a function of Dm. The price one should pay for

incremental data should ultimately be a function of how that
data changes the expected value of the application of that

data.

We now define changes in EF[Vi] explicitly in terms of

changes in precision, lift, recall, AUC, and partial AUC. In the

‘‘OUR OBJECTIVE IS TO
MEASURE THE IMPACT

OF ADDING THIS NEW X
INC

DATA TO OUR
EVALUATION METRIC.’’
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next section, we present just the main results for concision.

The full derivations can be found in the Appendix.

Precision/lift. Precision at a threshold k represents the

percentage of instances classified as positive that are indeed

positive and is defined as: PREk=TP · (TP + FP)
- 1. Lift at the

same threshold k is just the precision at k divided by the base

percentage of positives in the entire dataset (not just the set

above k). Since the precision and lift vary by a constant scalar,
we consider only precision for the rest of this analysis.

Given two classifiers Fk
Inc and Fk

BL, we can now express the

change in expected value from using the former over the

latter as a function of the change in precision. Specifically,

DEk[Vi]¼ Ek[VijPRE
Inc
k ]� Ek[VijPRE

BL
k ]

¼DPREk · (VTP �CTP þCFP)

where DPREk =PREk
Inc

-PREk
BL.

Recall. Recall (also called the TP rate) at a threshold k

represents the percentage of TPs within the top k and is de-

fined as: RECk=TPRk =TP/(TP + FN). To express DEk[Vi] in

terms of DTPRk, we need to also introduce the FP rate at

threshold k (FPRk), defined as FPRk = FP/(FP +TN).

Thus, for a fixed FPRk:

DEk[Vi]¼ p(Y ) ·DTPRk · (VTP �CTP þCFN)

where DTPRk=TPRk
Inc

-TPRk
BL.

Without this constraint, we would need knowledge of both
metrics to compute the change in expected value:

DEk[Vi]¼ p(Y ) ·DTPRk · (VTP �CTP þCFN)� p(N)

·DFPRk ·CFP

where DFPRk = FPRk
Inc

- FPRk
BL.

Some applications might call for minimizing the cost of ac-

quiring a set number of TPs. In such cases, we seek to lower

the FPR given a fixed TPR. This amounts to setting

DTPRk= 0 and just using the right-most term in the above

equation.

Area under the ROC curve. The receiver operator curve is

a plot of the points (TPRk, FPRk) of a given classifier F for

every possible threshold value k. The AUC is a metric that
defines the general ranking ability of a classifier across all

instances. The AUC is also equivalent to the Mann–Whitney

U statistic and represents the probability that a positively

labeled instance has a higher score than a negatively labeled

instance.

The AUC is an appropriate metric under scenarios where the

exact classification threshold k might not be known in ad-
vance. This scenario is likely under budget uncertainty, when

at the time of evaluating a predictive model, one does not

know exactly the size of the population to which it will be

applied. Another use case of the AUC is when data sets are

sold in bulk such that all instances must be purchased. An

ideal scenario is one where we can cherry pick the best in-

stances (i.e., the instances that our classifier would predict to

be positive), but we do not often have this option. In such
circumstances, we need to quantify the average expected va-

lue of all instances.

We adjust the above notation to express this uncertainty over

the threshold k. Ek[Vi] gives us the expected value of applying

a classifier with a known threshold k on an instance. We now

define E[Ek[Vi]] as the expected value of Ek[Vi] over all

possible values of k.

With this quantity defined, we can relate the change in ex-

pected value to the change in AUC:

DE[Ek[Vi]]¼ (VTP �CTP þCFN) · p(Y )·DAUC

where DAUC =AUCInc
-AUCBL.

FIG. 1. The confusion (A) and cost–confusion (B) matrices are helpful tools for setting up various classification metrics, as well as

understanding the economic implications of classification decisions.
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In situations where k is unknown but can be restricted to

some range based on domain knowledge of the problem, the

partial-AUC18 can be used in the above equation.

Case Studies

In this section we present two case studies on real data that

demonstrate our data pricing methodology. To recap our

method, the estimation of the economic value of data begins

first by defining exactly what is incremental data, determining

an appropriate metric given the ap-

plication, and defining values for the

different cells in the cost–confusion

matrix. The second step is to esti-
mate two models, one without the

incremental data and another with

it. We have presented our method-

ology being agnostic to model esti-

mation, but it should be noted that

the algorithm/model used could

have a dramatic effect on the final

value estimates. Last, given both mod-
els, compute the difference in the

desired metric and apply one of the

formulas presented in the section

Estimating the Value of Data.

We illustrate this methodology on the following classification

scenarios:

1. Dstillery display advertising: We estimate the value of

augmenting display advertising campaign decisions

with third-party audience segments.

2. Direct mail campaign: We estimate the value of adding
data for predicting response rates in a direct mail

campaign soliciting donations to a veteran’s charity.

Case study 1: display advertising
Dstillery is an advertising technology company that uses

predictive modeling to define audience segments for display

advertising.19 The company uses both first-party and third-

party user behavior data to match the right ads to the right

users. As is common in the ad tech industry, Dstillery has its
own native data but also has access to data segments sold by

third parties. The optimization scenario we present here is

one in which we want to target a specified number of users

and minimize the total cost per acquisition, which is the cost

of media plus data divided by total conversions. The metric

we focus on is precision at 1% of the scored sample.

For this example, we cover a common scenario the firm faces
when managing campaigns—given our own proprietary data,

should we purchase any additional third-party data to im-

prove campaign performance? We illustrate this scenario by

estimating the performance improvement of adding 1 of 4

third-party audience segments15 to each of 10 campaigns. We

examine this under two scenarios: (1) where no prior data is

available; (2) where the default Dstillery data is available. The

second scenario best represents how our analysts would ap-
proach the problem in normal operations. We run the first to

highlight a very important point—some data alone has de-

monstrable value, but conditional on other data being pres-

ent, that value can be diminished.

Figure 2 shows the estimated value of 4 third-party segments

for 10 campaigns under the first scenario (i.e., no other data

available). In this analysis, we cal-
culate DPRE. We do not need a

prediction model here because the

baseline is the base conversion rate

(equivalent to a model without any

features), and the incremental data

is defined as a user being in a single

particular segment.

We can see in this figure that each

segment has a different value for

each campaign, and a given segment

can be worth a lot for one campaign

and nothing for another. The vari-

ances are a function of both differing

values per conversion and the fact

that segments are naturally more
suited for certain campaigns (e.g., we find the auto parts in-

tender segment has value only for the campaign selling auto

supplies).

The values shown in Figure 2 can be used by a campaign

account manager as a decision tool for whether to purchase a

particular segment for a given campaign. Given the assumed

value of conversion and cost of media, if the cost of data is
less than the value estimated by our methodology, then

purchasing the data represents a positive ROI decision.

We next perform the same analysis using as a baseline the

data that is native to the Dstillery system. This data consists of

consumer web usage that contains the URLs visited by a

particular consumer in a particular period of time. This data

is partially purchased in batch from third parties and partially
obtained for free as a byproduct of bidding activity. In effect,

this data can be considered a sunk cost. In this experiment,

we train L2 regularized logistic regression models20 with two

groups of features: (1) binary indicators of user membership

in any Dstillery owned and defined segment; (2) binary in-

dicator of the user membership in the particular third-party

segment we are evaluating. The estimates were derived using

precision values calculated from an out-of-sample holdout set.

Figure 3 replicates Figure 2 with the new baseline model. We

can see in Figure 3 that for the particular campaigns and

segments chosen for this analysis, the incremental value of the

data changes dramatically once we include Dstillery data. In

‘‘WE HAVE PRESENTED OUR
METHODOLOGY BEING
AGNOSTIC TO MODEL

ESTIMATION, BUT IT SHOULD
BE NOTED THAT THE

ALGORITHM/MODEL USED
COULD HAVE A DRAMATIC

EFFECT ON THE FINAL
VALUE ESTIMATES.’’
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FIG. 3. The incremental value of targeting a user in a particular segment across 10 different campaigns. The incremental value is over the

performance achieved by using Dstillery’s default data and is represented as the value per 1000 users targeted. In each case, we examine the

precision when targeting the top 1% of the scored user base for models with and without the indicated segment.

FIG. 2. The incremental value of targeting a user in a particular segment across 10 different campaigns. The incremental value is relative to

randomly targeting users and is represented as the value per 1000 users targeted. The value of a conversion is different for each campaign,

but ranges from $200 for the cruise line to $1.50 for restaurants. For the purpose of this analysis, we assumed that the media cost is the same

for users in the segment as it is for randomly targeted users.
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most cases, the incremental value goes to zero. In general, this

type of phenomenon is driven by redundancies in the in-

cremental data. We see that the third-party segments have
value when used alone, but conditional on some other data

being present, the value is dramatically reduced.

Case study 2: direct mail donation solicitations
In this example, we examine another targeted marketing

scenario, but the data acquisition process is different from the

first setting. In the display advertising scenario presented

above, a firm pays for the data only if the user is in the
segment. In this sense the data can be cherry picked such that

only users with some positive expected value are selected. In

other cases, data is sold as an all-or-nothing scenario. In such

a scenario, the firm buying the data has to buy a set of fea-

tures for all users and only after the purchase can the buying

firm decide who to target.

The dataset used is from the second KDD CUP in 1998. It was
provided by the Paralyzed Veterans of America (PVA), a not-

for-profit organization that provides programs and services

for U.S. veterans with spinal cord injuries or disease. With an

in-house database of over 13 million donors, PVA was also

one of the largest direct mail fundraisers in the country. The

dataset provided for the contest consists of 191k ‘‘lapsed’’

donors who are individuals that made their last donation to

PVA 13–24 months prior to the date of the data.

We chose this dataset as a relevant case study because it

contains very rich groups of features from different origins, is

a well-defined predictive modeling problem, and contains

known values for the quantities in the cost–confusion matrix.

The dataset has five groups of features, two of which are

internal to PVA (base and historical) and three are external
(census and two third-party sources):

� Base: information on the household including demo-

graphic data such as age, number of children, income,
wealth, etc. (*30 features)

� Census: large variety of aggregated census data of the

neighborhood (*300 features)
� Historical: PVA giving history of the specific donor

over the last 10 years (*10 features)
� Third 1: third-party data on known responses to other

types of mail orders for *15 publications and pur-

chase classes
� Third 2: third-party data on donor’s interests on *15

categories

The targeting problem is to select from the list of lapsed

donors a subset that has a high likelihood to donate if sent a
solicitation letter in the mail. Using L2 regularized logistic

regression, we estimate multiple models, with each model

using a different subset of the feature groups specified above.

We chose as a metric of analysis the AUC because of the

uncertainty inherent in the application. Specifically, we need

a value that represents the average value of any user, not just

the set of users we want to target. Since we cannot cherry pick

which users to purchase data from, we want a more conser-
vative estimate, and AUC provides an apparatus for this.

Just like in the display advertising example, we estimate the

value of incremental data using two baselines. Our first

baseline is the ‘‘base’’ group defined above. The second

baseline is ‘‘base’’ plus ‘‘historical,’’ and represents the fea-

tures that PVA already has and does not need to purchase.

We show incremental value against both baselines to quantify
the inherent value of the user transaction history, which is a

variety of data that many firms have in their customer re-

lationship management systems. Table 1 shows AUCs, in-

cremental AUC, and estimated value of each feature group.

The main trend we see here is similar to that in the display

advertising example: at least one of the third-party data sets

has demonstrable value, but such value diminishes in the

context of having useful proprietary data. We can see in the
first block of values in Table 1 that the historical transaction

data provides over 10 · the value to the firm than any third-

party data available for purchase. We also find that after

considering the historical data, only one source of third-party

data has value, and the maximum price the firm should pay

for this data drops from $3.69 to $0.41 per 1000 records.

Conclusion

Despite a rich body of research that attempts to quantify the

impact of adding additional data to a predictive modeling

application, there is almost nothing that offers managers a

tool for understanding how to evaluate incremental data in

economic terms. Data scientists and their managers are not
immune to the economic reality of having to make positive

ROI decisions. As ‘‘big data’’ becomes the panacea for many

business optimization decisions, it is increasingly important

for managers to be able to evaluate their data-driven deci-

sions and justify the investments made in acquiring and using

data. Without the tools to make such evaluations, big data is

more of a faith-based initiative than a scientific practice.

Table 1. The Incremental Value of Various Feature

Groups on the Paralyzed Veterans of America Data

Data used AUC
Delta
AUC

Data value
per 1000 records

Base 0.5361
Base+Census 0.5402 0.0041 $3.04
Base+Third 1 0.5343 - 0.0018 $0.00
Base+Third 2 0.5411 0.0049 $3.69
Base+Hist 0.6036 0.0674 $50.58
Base+Hist+Census 0.5958 - 0.0078 $0.00
Base+Hist+Third 1 0.6000 - 0.0036 $0.00
Base+Hist +Third 2 0.6041 0.0005 $0.41

In this analysis, we used the average donation amount of $15 as the
estimate of VTP. AUC, area under the ROC curve.
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We presented in this work a starting point for understanding

the value of data in economic terms. This methodology was

borne out of necessity and, along with several variants of it,
has served Dstillery in making managerial decisions around

optimal data investment. Our framing of the problem as a

counterfactual analysis follows naturally from the fact that

evaluating data effectiveness always boils down to discussions

of causality. Thinking causally, our methodology asks, ‘‘How

much does this data cause our predictive performance to

improve?’’ Naturally, data providers should be rewarded

proportionately to the particular data’s ability to effect pos-
itive change.

We note that for the practitioners who endeavor to apply the

proposed methods to their own prediction problems, these

methods are only as good as the decisions made at the time of

application. Data has no intrinsic value, and the estimate of

its value is only as good as the abilities of the modeler un-

dertaking this exercise. The tools that we present are relatively
straightforward, but behind them lie the choice of algorithm,

the skill at objective out-of-sample evaluation, and the proper

assessment of the true costs and benefits of taking a particular

action. With a solid foundation of predictive modeling and

knowledge of the problem, data scientists and managers can

apply these methods to make data acquisition decisions with

ROI as the primary criterion.
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Appendix

In this section we present the more technical details of how

the equations in the section Estimating the Value of Data
were derived.

Precision/lift
Precision at a threshold k is defined as: PREk =TP/(TP + FP).

Given a value PREk, we can express the expected value of

classifying a single instance as:

Ek[VijPREk]¼ PREk · (VTP �CTP)� (1� PREk) ·CFP

¼ PREk · (VTP �CTP þCFP)�CFP

Given two classifiers Fk
Inc and Fk

BL, we can then express the

change in expected value from using the former over the

latter as a function of the change in precision. Specifically:

DEk[Vi]¼ Ek[VijPRE
Inc
k ]� Ek[VijPRE

BL
k ]

¼DPREk · (VTP �CTP þCFP)

where DPREk =PREk
Inc

- PREk
BL.

Recall
Recall (also TPR) at a threshold k is defined as: RECk =

TPRk=TP/(TP + FN).

False-positive rate at threshold k (FPRk) is defined as:

FPRk = FP/(FP +TN).

We start by defining Ek[Vi] in terms of both metrics TPRk

and FPRk
9:

Ek[VijTPRk , FPRk]¼ p(Y ) ·TPRk · (VTP �CTP)� p(Y )

· (1�TPRk) ·CFN � p(N) · FPRk ·CFP

¼ p(Y )· (TPRk · (VTP �CTP þCFN)

�CFN)� p(N) · FPRk ·CFP

Unlike with precision, to express the change in Ek[Vi] purely

in terms of the change in recall, we need to put a constraint
on FPRk. Thus, for a fixed FPRk:

DEk[Vi]¼ Ek[VijTPR
Inc
k , FPRk]� Ek[VijTPR

BL
k , FPRk]

¼ p(Y ) ·DTPRk · (VTP �CTP þCFN)

where DTPRk =TPRk
Inc

-TPRk
BL.

Without this constraint we would need knowledge of both

metrics to compute the change in expected value:

DEk[Vi]¼ p(Y ) ·DTPRk · (VTP �CTP þCFN)

� p(N) ·DFPRk ·CFP

where DFPRk = FPRk
Inc

- FPRk
BL.

Area under the ROC curve
The receiver operator curve is a plot of the points (TPRk,

FPRk) of a given classifier F for every possible thresh-

old value k. The AUC can be interpreted as the expected
value of TPR given a uniform distribution of FPR. More

formally:

AUC¼

Z 1

0

TPR dFPR

While this interpretation is convenient for mathematical

expression, most designers of predictive modeling applica-

tions do not have direct control of FPR. Instead, their deci-

sion sets consist of finding the appropriate threshold k, which
then can be used to compute FPR.11 Fortunately, AUC can be

re-expressed with a change of variables in terms of k and not

FPR.21 Specifically:

AUC¼

Z þ1

�1

TPRkf0(k)dk

where f0(k) is the probability that our scoring function m(x)

produces a score of exactly k in the instances that have a

negative class label. With this expression we can interpret the

AUC as the expected TPR over our choice of k, where this

choice follows the distribution f0(k).

In the above section, we expressed Ek[Vi] in terms of (TPRk,

FPRk). Under uncertainty about our threshold k, we have to

think in terms of the expected value of Ek[Vi] over all possible

values of k. Specifically:

E[Ek[Vi]]¼

Z þ1

�1

Ek[Vi]f0(k)dk

¼

Z þ1

�1

[p(Y )· (TPRk · (VTP �CTP þCFN)

�CFN)� p(N) · FPRk ·CFP]f0(k)dk
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¼ a1 ·

Z þ1

�1

TPRkf0(k)dk� a2 ·

Z þ1

�1

f0(k)dk

� a3 ·

Z þ1

�1

FPRkf0(k)dk

¼ a1AUC� (a2 þ 0:5· a3)

where a1 = (VTP -CTP +CFN) · p(Y), a2=CFN · p(Y), and

a3= p(N) ·CFP. The last term in the above equation comes

from the fact that
R þ1
�1 f0(k)dk¼ 1, and

R þ1
�1 FPRkf0(k)dk¼R þ1

�1 FPR dFPR¼ 0:5.

Now we can express the change in expected utility of a

classification on a specific instance as a function of the change

in AUC. Namely:

DE[Ek[Vi]]¼ (VTP �CTP þCFN) · p(Y )·DAUC

where DAUC =AUCInc
-AUCBase.
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