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ABSTRACT

In many online advertising campaigns, multiple vendors,
publishers or search engines (herein called channels) are con-
tracted to serve advertisements to internet users on behalf
of a client seeking specific types of conversion. In such cam-
paigns, individual users are often served advertisements by
more than one channel. The process of assigning conver-
sion credit to the various channels is called “attribution,”
and is a subject of intense interest in the industry. This pa-
per presents a causally motivated methodology for conver-
sion attribution in online advertising campaigns. We discuss
the need for the standardization of attribution measurement
and offer three guiding principles to contribute to this stan-
dardization. Stemming from these principles, we position
attribution as a causal estimation problem and then pro-
pose two approximation methods as alternatives for when
the full causal estimation can not be done. These approxi-
mate methods derive from our causal approach and incorpo-
rate prior attribution work in cooperative game theory. We
argue that in cases where causal assumptions are violated,
these approximate methods can be interpreted as variable
importance measures. Finally, we show examples of attri-
bution measurement on several online advertising campaign
data sets.

Categories and Subject Descriptors

H.2.8 [Database Management]: Database Applications
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1. INTRODUCTION
Total US internet advertising revenue is projected to ap-

proach $40bn by the end of 2012 [6]. Estimates suggest
that the internet accounts for only 13-19% of total media
ad spend, despite taking up 25% of total time spent on me-
dia. This discrepancy suggests a significant opportunity for
growth in online ad spending. Online ad spend is largely
dominated by two categories: Paid Search, which has the
dominant share of money spent, and Display, which includes
banner ads and emerging video formats. The prevailing view
is that a barrier to the growth of Display is the lack of appro-
priate measurement techniques that capture the full value of
the category [5]. The measurement standard most debated
in the industry is conversion attribution, which is generally
defined as the assignment of conversion credit when multiple
advertising channels reach a given online user, where an“ad-
vertising channel” can be defined as any vendor or publisher
showing advertisements on behalf of an advertiser.1 The cur-
rent default conversion attribution methodology used in the
industry is generally referred to as “last-touch” attribution,
which is a rule-based attribution methodology that assigns
full conversion credit to the channel that last presented an
advertisement to a converting user. An attribution solution
that can move beyond the last-touch model is regarded as a
priority within the industry.

An alternative to the last-touch attribution has been pro-
posed and is used by several firms within the industry. This
alternative is generally referred to as the “multi-touch” at-
tribution model, and attempts to assign credit to multiple
channels when more than one have been observed to show
an advertisement to a converting user.2 Several firms offer
heuristic based attribution methods [10, 11, 12], which use
different sets of general rules to allocate conversion credit.
Shao et al. [20] propose a multi-touch model that is statis-

1Examples of advertising channels used in this context in-
clude, but are not limited to, search engines, ad networks,ad
exchanges, behavioral targeting firms and large online pub-
lishers
2To be clear, this applies to scenarios where an advertiser
elects to serve the same ads through multiple channels on a
given campaign



tically derived from the data generated by a specific adver-
tising campaign, and is, to the authors’ knowledge, the only
published data-driven system in practice.

Despite the progress that has been made in developing
multi-touch attribution systems for online advertising, there
is currently no existing generally accepted framework or set
of standards upon which attribution measurement is based.
Lack of transparency and standardization are considered to
be two general barriers to the growth in online ad spend [7].
Of particular concern is the lack of transparency and stan-
dardization in online attribution measurement. Our goal
with this paper is to make progress in this direction. Our
first contribution is a set of general properties of a good at-
tribution system that motivate setting up attribution within
a causal framework. We define attribution parameters that
are designed to allocate credit based on the causal effect
of each ad. Second, we offer an approximation method to
the full causal framework that can flexibly handle different
assumptions about the data. These approximation meth-
ods derive from prior attribution work in Cooperative Game
Theory and we recast them as variable importance measures
where the causal interpretation does not stand up. Finally,
we establish that prior work in the field by Shao et al. [20]
falls within our principled framework.

This paper is organized as follows: Section 2 proposes
three properties of a good attribution system and presents a
brief survey of the variable importance and causal method-
ologies that inform our attribution system. Section 3 first
defines attribution parameters within a familiar causal frame-
work and discusses the practicality of this approach. It then
extends this into an approximation of the full approach to
allow for different assumptions about the data. We conclude
section 3 by establishing the relationship between this and
prior work. Section 4 covers estimation and gives an empir-
ical analysis on both simulated and real campaign data.

2. AXIOMATIC PROPERTIES, VARIABLE

IMPORTANCE AND CAUSALITY
Attribution measurement falls in the domain of descrip-

tive modeling, in that for most real-world applications there
exists no objective truth or evaluation set with which to
measure any type of accuracy or loss function. Aside from
formally developing a method for variance estimation of es-
timated attribution parameters, what is considered “good”’
attribution may rely by and large on the subjective eyes of
the beholder. As a step towards encouraging universally ac-
cepted attribution standardization, we propose three subjec-
tive properties that we believe define a good attribution sys-
tem. These properties motivate a causal modeling approach
towards attribution measurement. Where causal modeling
assumptions breakdown, we motivate attribution as a vari-
able importance problem.

2.1 Properties of a Good Attribution System
A good attribution system, more than anything, should

align the incentives of the advertiser with the incentives of
the channel hired to run ads on behalf of the advertiser. A
common goal of an advertiser running an online ad cam-
paign is to drive as many conversion events at as low a cost
as possible. The goal for channels, however, is to receive
as much payment as possible for the conversion events the
advertiser observes while minimizing its own costs. With

multiple channels on a campaign, the optimal strategy for a
given channel might be guided more by how it earns credit
for a conversion and less by how well it can influence a con-
version. An example of this can be seen in the “last-touch”’
attribution model defined above and currently in widespread
use. Under this attribution scheme, a channel might choose
to run a large volume of cheaper “below-the-fold” advertise-
ments (meaning the ad is placed below the main viewing
window and is rarely viewed by the web user). Because a
below-the-fold ad is likely to be the last to render on a page,
and because of the quantity of ads served, the channel exe-
cuting this strategy is likely to be the “last-touch” and thus
earn much of the credit for conversions actually driven by
the other channels.

We thus propose the following properties in an effort to
contribute to an attribution standard that better aligns the
incentives of advertisers and advertising channels.

1. Fairness - A good attribution system should reward
an individual channel in accordance with its ability to
affect the likelihood of conversion.

2. Data Driven - A good attribution system should be de-
rived specifically for the advertising campaign in ques-
tion, using both ad treatment and conversion data cap-
tured during the campaign.

3. Interpretability - A good attribution system should be
generally accepted by all parties with material interest
in the system, on the basis of its statistical merit, as
well as on the basis of intuitive understanding of the
components of the system.

2.2 Attribution and Causality
We satisfy “fairness”’ in our attribution system by using

the counterfactual framework presented by Rubin in [19]. A
counterfactual analysis in the context of online advertising
asks the question: “what is the effect of an ad on user con-
version?” Answering this involves measuring the difference
in conversion outcome on a user with and without an ad be-
ing shown. As a single user can not be both “exposed”’ and
“unexposed” to an ad, the effect is usually measured as the
difference of means between a group of “exposed”’ users and
a group of “unexposed”’ users. Assuming that users are ran-
domly assigned to either group, this measure is an unbiased
estimate of the true causal parameter.

We set up our counterfactual framework for multi-touch
attribution measurement by defining parameters that rep-
resent various levels of ad exposure (these will be defined
explicitly in section 3). Estimation of these parameters can
be achieved via controlled experimentation or with obser-
vational data methods, as is done by Stitelman et al. [22]
and Chan et al. [4]. The attribution framework we pro-
pose is agnostic to the estimation method, though it is often
technically and practically infeasible to coordinate a large
scale randomized experiment across a multitude of compet-
ing channels. Observational methods for multi-touch attri-
bution measurement therefore should be considered.

In order for a counterfactual analysis to produce unbiased
estimates of causal effects (both in observational and exper-
imental settings), several strict assumptions must be made
about the data. These are: (1) that the treatment pre-
cedes the outcome (SUTVA, or time-ordering assumption),
(2) that any attribute that may affect both ad treatment



and conversion outcome is observed and accounted for (no
unmeasured confounding) and (3) that every user has some
non-zero probability of receiving an ad treatment (positiv-
ity assumption) [24]. It is highly likely that in observational
data for multi-channel advertising campaigns the second and
third assumptions will be violated. This reality does not pre-
vent the use of counterfactual analysis, but it does require
a change in the interpretation of results. In prior work re-
lated to counterfactual analysis with similar violations of the
strict causal assumptions, the problem has been recast as a
variable importance measure [25]. We continue with this
precedent and where attribution measurement does not sat-
isfy strict causal assumptions, we recast the interpretation
as a variable (or channel) importance problem.

2.3 Attribution and Variable Importance
In cases where multi-touch attribution measurement can

not be cast and interpreted as a causal effect analysis, the lit-
erature on variable importance supports recasting the prob-
lem as a channel importance problem. The counterfactual
concept is found throughout various diverse approaches to
variable importance, which we review in this section.

Variable importance is often defined in the literature as
the effect on a measurable quantity of interest upon chang-
ing a variable of interest, holding all other factors constant.
This definition is consistent with the counterfactual frame-
work presented above (i.e., a variable can be a channel ad
with two states, exposed or not exposed, and its “impor-
tance” is the effect on conversion). Additionally the idea
of “importance” is in and of itself a vague term, so variable
importance is often guided by principles specific within the
domain of analysis. This concept was presented early on by
Achen [1], noting that a key question on variable importance
is “important for what?” He suggests that any inquiry into
the importance of a variable should also have an explicit ob-
jective function associated with the importance. In the case
of attribution, advertising channel (or variable) importance
should be determined by a channel’s ability to influence con-
version.

Much of the literature found on the topic is focused on
variable importance in linear multiple regression scenarios.
Many of the methods for measuring variable importance in
the regression context involve direct interpretation of regres-
sion coefficients or deriving a measure off of some transfor-
mation of the regression coefficients. A thorough survey and
analysis of these methods is available in Johnson et al [13].
It is beyond the scope of this paper to fully define and ex-
plain each method surveyed, but a common criticism is that
coefficient-based methods lead to problems of interpretabil-
ity in the presence of collinearity amongst predictors [13, 3,
15]. Shao et al. [20] present a coefficient based method for
multi-touch attribution that has several limitations, simi-
lar to those discussed in the variable importance literature.
These are: (1) logistic regression coefficients are difficult to
interpret intuitively, and (2) negative coefficients may arise
due to channel collinearity.

Several of the more recent advances in variable impor-
tance for linear regression involve game theory or variable
transformation approaches to ensure independence of pre-
dictors. Budescu [3] developed a method called Dominance
Analysis, which aims to measure predictor importance in a
way that is invariant to subset selection and stands up to
collinearity of predictors. An important contribution of this

method was to incorporate the “partial effects” of a predic-
tor, which is defined as the average increase in R2 by the
inclusion of a predictor, conditioned on all subsets of predic-
tors. This notion of partial effects is substantively the same
as the method of Shapely Value regression, later used by
Grömping and Lipovetsky et al. [15, 8]. The Shapely Value
regression attempts to decompose the R2 of a model such
that each predictor’s Shapely Value represents the average
increase in R2 the predictor induces upon inclusion into the
model across all possible subsets of predictors. The Shapely
Value approach lends itself to channel importance and at-
tribution analysis, and will be developed further in section
3.

The variable importance concepts surveyed so far gener-
ally involve decompositions of explained variance in linear
regression models. Other variable importance measures that
can be applied under more general modeling assumptions
have been presented by Breiman [2] and Van der Laan [25].
Strobl et al. [23] present an overview of variable impor-
tance measures that can be derived from Random Forests
as developed by Breiman [2]. Noted in Strobl et al. [23] is
the fact that interpretability of Random Forest variable im-
portance is not as straightforward as in the single decision
trees that compose the forest. This lack of interpretabil-
ity led us to exclude Random Forests as a possible channel
importance measure. Van der Laan et al. [25] introduce a
measure of variable importance that is of direct relevance to
channel importance and attribution measurement. They de-
fine a parameter using the same counterfactual framework
discussed above. When data conditions satisfy the strict
causal parameters defined above, this variable importance
parameter is equivalent to a causal effect parameter, oth-
erwise it is a variable importance measure. An advantage
this method has over many of the regression based methods,
in the context of online ad attribution, is that the param-
eter of interest (channel importance) is directly measured
using a counterfactual framework. This is a main reason we
have chosen this method for our design, in addition to its
flexibility of interpretation in different settings.

3. MULTI-TOUCH ATTRIBUTION
In this section, we present a causal framework for eval-

uating multi-touch attribution. We define parameters of
interest that directly measure the additive marginal lift of
each ad within the ad campaign and argue that this lift rep-
resents the value created by targeted and thus attribution
credit should be directly derived from this measure. The ba-
sis of each attribution parameter is a counterfactual frame-
work that under strict assumptions about the data can be
interpreted as causal parameters. We discuss the practical
limitations of this fully casual method and then define an ap-
proximate attribution measure that can be recast through
the lens of channel importance estimation. To our knowl-
edge, no existing published method presents attribution as
a causal estimation problem. We extend the prior published
work of Shao et al. [20] in our approximate attribution mea-
sure by showing that our proposed method is a more general
case of their “simple probability model.”

3.1 “Causal" Attribution
For each subject i (generally an internet user), we define a

time indexed data structure Λ = {W = {W 1, . . . ,WT }, A =
{A1, . . . , AT }, Y = {Y 1, . . . , Y T }}. Each W t is a vector of



user attributes that represent the state of the user at time
t, prior to viewing any ads (such as demographics, prior
purchase behaviour, prior searches, etc.). Each At is a vector
of treatment related attributes that describe characteristics
specific to the advertisement shown at time t (such as size,
location, channel, etc). Finally, each Y T is a binary variable
indicating that the user converted at time index t following
an ad at time t.

Attribution within the context of online advertising in-
volves two major allocations. First, how much value do we
credit to the online portion of the campaign in total, and sec-
ond, within the value credited to the campaign, how do we
allocate credit to the individual channels serving ads to user
i. We address the first allocation by defining a parameter
that represents the marginal value created by an ad served
to a user at time t:

Ψt = E[Y t|‖at‖ > 0,W t = wt]− E[Y t|‖at‖ = 0,W t = wt] (1)

Ψt measures the change in expected value of conversion
for user i after having seen an ad at time t (note, we use the
notation ‖at‖ > 0 to indicate that an ad is served at time
t). In defining the treatment effect at time t by equation
(1) we assume a Markovian process (as defined by Pearl
in [17]) such that Y t only has a causal dependency on At

and W t. We justify this by incorporating user treatment
and conversion history into the attributes of W t. We also
assume that all confounders of Y t and At are accounted for
in W t.

The total value created by the campaign on user i is then
the sum of value created by each ad up to time T :

Ψ =
T
∑

1

Ψt ∗ I(‖at‖ > 0) (2)

We next seek a second allocation that decomposes Ψ to
the additive impact of ads served by each channel in the at-
tribution analysis. We start by defining a quantity Vk that
satisfies the following constraint:

∑K
k=1 Vk = Ψ, where k in-

dexes some channel Ck ∈ C (i.e., the set of all channels). Vk

is the amount of value that should be allocated to channel
Ck and measures its total marginal impact on conversions
given the other ads shown to the user. This is done trivially
by adding an indicator function to equation (2) that shows
that the given ad has been served by channel Ck. Specifi-
cally,

Vk =
T
∑

1

Ψt ∗ I(‖at‖ > 0) ∗ I(channel(at) = Ck) (3)

where I(channel(at) = Ck)) is the indicator function de-
termining whether the ad at time t was served by channel
Ck.

We propose these attribution parameters as direct mea-
sures of the causal lift associated with each ad being served.
This approach is consistent with our philosophy that at-
tribution credit should reflect the value being created by
each ad and the total attributed amount should account for
the full value being created by the campaign. Further the
counterfactual framework is highly intuitive and should be
interpretable by all parties concerned with the attribution
problem. But while setting up and defining the parameters
of interest for a fully causal attribution model is straightfor-
ward, estimating them as defined is not a trivial matter. In
many cases, it may be downright impossible.

We defined each user at time t as an outcome Y t, a set of
covariates W t and a possible ad, served by one of K chan-
nels. In most campaigns, each channel likely uses its own
proprietary data and decisioning logic to serve ads. Very
often the ads are targeted to users with a higher propensity
to convert without an ad treatment, so the observed out-
come Y t does reflect the actual impact of the ad. [14, 22].
To estimate unbiased causal impacts as defined by (1), the
analyst would need to adjust for all possible confounding
information in W t or design a controlled experiment across
the K channels. In the fragmented and competitive world
of online advertising, it is highly unlikely that the analyst
would be able to either coordinate a large scale controlled
experiment across K separate firms or aggregate all possible
confounders being used by each firm. Further, the identifi-
ability of the causal model might be a problem, because to
estimate Ψt in equation (1), for each W t = wt there must be
observations corresponding to ‖at‖ > 0 and ‖at‖ = 0 (the
positivity assumption).

The impracticality of estimating a fully causal attribution
model motivates having alternative methods that preserve
as much of the favorable characteristics of the causal method
as possible (i.e., interpretability, marginal lift measurement,
additive decomposition). In light of this, we propose an ap-
proximating causal attribution method that still measures
channel value creation, but is technically more practical and
incorporates game theoretic principles to solve certain in-
centive alignment problems that even the full causal model
in the above section does not satisfy. The sacrifice we make
is we can not cast this approximating method as a causal
estimation problem. Instead, using our discussion in section
2.3, we recast this approximation model as a ’variable’ or
’channel importance’ problem.

3.2 “Channel Importance" Attribution
To simplify our model, we follow the approach from [20]

and reduce our representation of the user from the full or-
dered set of ads A to the set of channels C having shown the
ads. To simplify our time structure, we define W = W 1 and
do not consider ads after time t corresponding to Y t = 1
(any user with multiple conversions gets “reset” after each
conversion, where W = W t+1). In this representation, we
aim to estimate the importance of each channel on the out-
come Y vis-a-vis the other channels. We further reduce our
data by grouping users into cohorts that had the same re-
alization of C and W . Let λg = {C = {C1, . . . , CK},W,
γ =

∑

Y, n} be an aggregated dataset of n users having
seen ads by the same channels in C and having the same
values W = w, producing γ =

∑

Y total conversions (it is
convenient to think of λg as a grouping of Λ, such as that
returned by a query “select C,W ,

∑

y,
∑

1 from Λ group by
C,W”).

Our channel importance measure for attribution is the
channel’s expected marginal impact on conversion, where
the expectation is taken over the possible orderings of the
channels in C. This probabilistic approach is motivated by
the grouping of the data. If we define S as some subset of
C/k (the set C excluding Ck), and ωS,k is the probability
that set C begins with the sequence {S,Ck, . . . } in some



distribution Ω of possible orderings, then:

V ′
k = E[E[γ|S ∪ Ck,W = wi]− E[γ|S,W = wi]] (4)

=
∑

S⊆C/k

ωS,k ∗ [E[γ|S ∪ Ck,W = wi]− E[γ|S,W = wi]]

We can illustrate this attribution method using a toy ex-
ample of a two channel system. Given C = {C1, C2}:

V1 = ω2,1 ∗ [E[γ|{C1, C2},W = wi]− E[γ|{C2},W = wi]]

+ ω1,2 ∗ [E[γ|{C1},W = wi]− E[γ|{∅},W = wi]]

V2 = ω1,2 ∗ [E[γ|{C1, C2},W = wi]− E[γ|{C1},W = wi]]

+ ω2,1 ∗ [E[γ|{C2},W = wi]− E[γ|{∅},W = wi]]

Provided that ωS,k = P ({S,Ck, C/{S,Ck}) (i.e., the proba-
bility that C is ordered by the sequence {S,Ck, C/{S,Ck}}),

then it can be shown that
∑K

k=1 Vk = Ψ (we omit the proof
due to space limitations). This holds for all sets C of arbi-
trary size K.
Intuitively, Vk is the expectation of channel Ck’s influence

on Y over all of the possible orderings of C in a set of ads.
For a single user in an observed advertising campaign, the
ordering of C is realized and not random, so if Ω is chosen
as the empirical distribution of channel orderings, Vk can
be defined without the expected value,where the empirical
ordering probabilities are estimated directly from the data.
While convenient and intuitive, using the empirical distri-
bution of Ω introduces problems in the long-term that may
not be in the best interests of the advertiser in question. We
can illustrate this with a simple two channel system.

Given C = {C1, C2}, let’s assume the following: E[Y |{∅}] =
E[Y |{C1}] = E[Y |{C2}] = 0, and E[Y |{C1, C2}] = δ ≫ 0.
The attribution for channels C1 and C2 are then:

V1 = E[γ|{C1}]− E[γ|{∅}] = 0

V2 = E[γ|{C1, C2}]− E[γ|{C1}] = δ

What we have defined here is an ad campaign in which
channels C1 and C2 have zero individual impact but have a
strong interaction effect on Y . In a system where C2 system-
atically always serves an ad following C1, we end up with C2

accepting full credit for the value of Y in all instances (this
is a likely scenario when paid search channels are involved).
While this may be fair from C2’s perspective, as no value
would have been created without its participation, in the
long run, this is a suboptimal allocation for both channels
as well as the advertiser. The reason is that C1 would likely
not participate in subsequent campaigns (or would be cut by
the advertiser) due to its lack of payment, and following this
exit from future campaigns, C2 would not be able to create
value. So under this allocation scheme, both channels and
the advertiser lose out from any potential value creation.
While this is an extreme example meant for illustrative pur-
poses, it introduces another concept of what it means to be
“fair” in a value allocation sense.

For any arbitrary distribution Ω of possible orderings of
channel set C, the approximated attribution methodology
defined by equation (4) favors channels that systematically
appear later in the (expected) orderings of C in terms of
allocating the value of positive multi-channel interaction ef-
fects (the reverse is true for negative effects). This intro-
duces an undesirable quality in that a channel might at-
tempt to game the system by targeting a specific ordering
(first or last, depending on the interaction effects). Gaming

the system distracts the channel from what it should really
be doing, which is driving conversions on behalf of the adver-
tiser. The implication of this on the long-term equilibrium
of value allocation is beyond the scope of this paper, but
it introduces a need to reexamine the allocation of value for
multi-channel interaction effects, such that it reduces oppor-
tunities to game the system.

We can acheive even distribution of interaction effects
from equation (4) by defining Ω as a uniform distribution
over all possible orderings of C. Under this uniform distri-
bution, ωS,k is solely a function of the cardinality of S and
C. Specifically:

ωS,k =
|S|!(|C| − |S| − 1)!

|C|!
(5)

With ωS,k defined by equation (5), our attribution method-
ology in equation (4) is equivalent to the Shapely Value solu-
tion to value distribution in Cooperative Game Theory [21,
16]. We refer interested readers to [21, 16] for a thorough
treatment on the subject. This is to our knowledge, the first
application of the Shapely Value distribution methodology
being applied to value allocation in advertising attribution.
The Shapely Value attribution approach is equivalent to as-
suming a simultaneous joint advertising treatment. While
this is admittedly a simplification of the actual treatment
events, the simultaneous joint treatment assumption offers a
tremendous simplification in the number of parameters that
need to be estimated, as well, it ensures that joint treatment
interaction effects are split equitably amongst the channels
involved. Also, treatment levels by channel (i.e., frequency
and duration of exposure) are not explicitly modeled in this
approximating approach, but we argue that should ads have
a positive treatment effect, then channels with higher treat-
ment levels on average will have bigger marginal impacts
and would thus receive more credit within this system.

Thus far we have defined our approximate attribution sys-
tem using w-adjusted expectations of channel impacts on
conversion. This facilites a causal interpretation of marginal
channel lifts (even on the simplified data structure). In re-
alistic production settings however, it is highly likely that
at least one of the strict causal assumptions will be vio-
lated, and that often, confounding attributes are not even
observed. In such a setting, we can remove W from the pa-
rameters estimated in (4) and simply estimate the observed
channel impacts on conversion. Such estimates will likely
absorb the selection bias of each channel but the interpre-
tation as a channel importance weight is still valid. Also,
without adjusting for w, we are letting Ψ be the total num-
ber of conversions observed and not the joint treatment lift
of the campaign.

3.3 Generalization of prior state of the art
We noted that Shao et al. [20] have published the only

statistical and data-driven attribution solution used in pro-
duction as known by the authors. We can easily show that
their “simple probabilistic model” is, after rescaling, equiva-
lent to the Shapely Value formulation of equation (4) under
certain simplifying assumptions.

The definition of the data is the same as in 3.2, but we
dropW from consideration and for simplicity, omit the index
over user i.

Shao et al. [20] define Sk as channel Ck’s unnormalized



share of the total conversions, and calculate Sk with:

Sk = P (Y |Ck)

+
1

2(K − 1)

∑

j 6=k

[P (Y |Cj ∪ Ck)− P (Y |Cj)− P (Y |Ck)]

And then the attribution is calculated by normalizing Sk

with the following: V T
k = Sk∑

K

k
Sk

If we assume that the marginal effects of any ad treatment
after the 2nd are negligible, then Sk is a rescaled version
of V ′

k from equation (4) (with n = 1 and ωS,k defined by
equation (5)). With Sk and V ′

k only differing by a scalar
factor, the percentage of value each method allocates to the
given channels is identical. To show this, we define our above
assumption more formally: for all such cases where |S| > 2,
we get [P (Y |S∪{Ck})−P (y|S)] = 0. This assumption states
that the additional ad exposures (after exposures from S) do
not increase the probability of a conversion.

With the stated assumptions above, our attribution V ′
k

reduces to:

V ′
k =

2

K
P (Y |Ck)

+
1

K(K − 1)

∑

j 6=k

[P (Y |Cj ∪ Ck)− P (Y |Cj)− P (Y |Ck)]

= (2/K) ∗ Sk

An area for further work is to test the sensitivity of our
approximation method in equation (4) to the assumptions
that rendor these two methods equivalent.

4. EMPIRICAL RESULTS
In this section we present attribution results on 3 different

datasets. The first dataset is from 2 weeks of an actual ad-
vertiser’s online ad campaign, where the advertiser executed
a direct buy across multiple well-known internet domains.
The second is a synthetic, simulated ad campaign dataset,
generated to highlight certain properties of our attribution
system. The last dataset is from several ad campaigns in-
ternal to M6D3 and is distinct from the other two in that it
has both ad channel data and user characteristics that are
well known confounders in digital advertising. All attribu-
tion results labeled “Multi-Touch” were computed using the
methodology presented in section 3.2.

4.1 Model Selection and Estimation
For estimation, any model that produces estimates of bi-

nary class membership probability would be appropriate as
a candidate model. The candidate models explored in this
paper were: (1) normal maximum-likelihood logistic regres-
sion, (2) elastic-net regularized logistic regression, and (3)
smoothed empirical probability estimation. In each of these
model classes we vary complexity, variable selection and
smoothing parameters where appropriate, and use likelihood
based k-fold cross validation for model selection. The choice
of likelihood based cross validation over other emprical risk
measures is motivated by the results of Van der Laan et
al. [26] who show that, in finite samples, density estima-
tors chosen via likelihood k-fold cross validation converge

3M6D is a display advertising firm that uses proprietary
machine learning systems to target ads on behalf of branded
advertisers.

asymptotically to the true data generating distribution (us-
ing Kullback-Leibler distance to measure convergence be-
tween empirical and true distributions). Our ultimate goal
is to estimate unbiased conditional probability distributions,
so likelihood based cross validation makes it an appropriate
choice of risk function for model selection.

4.2 Direct Buy Ad Campaign
The first results we present are based on data from an ac-

tual campaign run by a major media company that sells on-
line subscriptions. The campaign was run as a direct buy on
7 major online content providers (with“Direct Buy”meaning
that the advertiser contracted directly with the 7 channels
to run the campaign, with no intermediary ad exchanges
being used). There was no targeting done based on user
characteristics, so the ads were displayed solely based on
visitation to one of the 7 content providers. Figure 1 shows
how the results of our multi-touch attribution methodology
established in this paper compares to a last-touch attribu-
tion methodology. The bars show the relative difference in
conversion credit between last-touch and multi-touch attri-
bution (where a negative difference means multi-touch as-
signs less credit than last-touch). The channels are sorted
from left to right in order of increasing channel effectiveness
(as measured by the probability of the user converting after
having seen an ad on that channel). By sorting on increasing
channel effectiveness, we can see that the two channels that
do better with the last-touch methodology are those with
the smallest channel effectiveness.

One might expect the propensity to be the last-touch
channel to affect attribution differences, but for this par-
ticular campaign, the range of different propensities to be
last-touch was only 41.4%–51.4%. The untargeted nature
of the campaign leads to an almost even likelihood of each
channel to be the last-touch, so the last-touch bias isn’t as
much a factor in explaining the differences shown. In many
other targeting situations though, certain strategies target
users that are further down the conversion path [9]. For
instance, general display advertising tends to broadly tar-
get users that may have no intention on purchasing a given
product, whereas Retargeting and Paid Search tend to tar-
get users during their product research phase. This causes
Retargeting and Paid Search to have a much higher tendency
to be last when overlap occurs. In such cases, we would ex-
pect the multi-touch attribution system to differ even more
from last-touch attribution.

Given any comparison of conversion allocations from two
different attribution methods, the goal of the analyst is to
determine which is better and to make recommendations
based on this choice. A challenge for attribution analysis
though is that the “truth” is a quantity that may never be
known, so there is no benchmark or holdout set to evalu-
ate “better” in a quantitative sense. In the next section we
make an attempt to compare our methodology with the in-
dustry standard of last-touch attribution where the “truth”
is known. We do this by synthesizing a campaign data set
and explicitly control the factors that influence attribution
allocations.

4.3 Simulation Study
Our goal in this simulation analysis was to simulate the

effects of various targeting and ad serving strategies working
simultaneously on the system and observe trends in attribu-



Figure 1: Multi-touch vs. last-touch attribution on
a direct buy ad campaign. The bars show the rela-
tive difference between the two attribution systems
([MTA-LTA]/LTA). Channels with lower ability to
drive conversions and with higher likelihood to show
ads last generally receive less credit in the multi-
touch system as compared to the last-touch system.

tion measurements given the known data generating distri-
bution. The online advertising strategies we simulated were:
(1) General Prospecting, (2) Retargeting, which is the prac-
tice of targeting users that had previously been observed
visiting or purchasing from an advertiser’s website and (3)
Paid Search, which is the practice of serving sponsored ads
in search query results. We simulate these strategies by con-
trolling three factors: (1) the channel correlation (or likeli-
hood for simulated channels to show ads to the same user),
(2) the likelihood to serve an ad and (3) the probability of
conversion conditioned on seeing an ad by a given channel.
For the purpose of comparison to a last-touch attribution
method, we also generate an ordering of ads for each user
and we introduce a bias so that each synthetic channel has
a different propensity to be last.

We start the simulation by generating an NxK matrix of
multivariate normal random vectors Θ, where each of the
N rows simulates a user and the K column variables are
normally distributed (X ∼ N (µ,Σ)),with µ = [0, . . . , 0] and
Σ defined as follows:

Σjk =







1 if j = k
.4 if group(j) = group(k)
.1 if group(j) 6= group(k)

We define a group as a set of channels belonging to a single
strategy. Channels within the same group have a covariance
of .4 and channels in different groups have a covariance of .1.
This covariance structure is designed to achieve the property
that similar strategies tend to hit the same users while dif-
ferent strategies tend to hit different users. Thus, if columns
Ki and Kj are correlated in our data matrix, the channels
Ci and Cj will be correlated and will serve more simulated
ads to the same users.

Our matrix of simulated user characteristics Θ has 50MM
rows and 14 columns. We transform this into a binary ad
matrix by comparing each element Θi,k to our chosen ad
propensity likelihood (column 3 in Table 1) and generating
an ad if NormInv(Θi,k, 0, 1) < AdPropensity Ck. We then
generate a conversion using the following formula:

Figure 2: Attribution analysis in the presence of
the confounding feature of prior interactions with a
brand’s website. Each bar shows the total conver-
sions attributed to the campaign, with and without
the confounding feature. We see that in all of cam-
paigns, a large portion of the conversions can be at-
tributed to the user having prior interactions with
the advertiser’s website.

P (Y ) = [1−
K
∏

k

(1− P (Y |Ck))] ∗ δ
∑

I(Ck) (6)

The first term in brackets represents the probability of
conversion assuming zero interaction effects. In many adver-
tising scenarios however, one should not assume that each
subsequent ad will have an effect proportional to its lone
effect, so we use the right-hand term to account for the
marginally decreasing effect of each ad. For this simula-
tion study we choose δ = .95. The fourth column of table
4 shows the values for P (Y |Cj) that we set. The last item
we simulated was a propensity for each channel to be last
in the ordering of channels that served an impression to a
single user. We accomplished this by generating a random
number for each channel on a given user and sorting by this
number. Each random number was generated such that each
channel has a different propensity to be last. The propensity
is shown in the 5th column of table 1.

Table 1 shows the results of our simulation study. We
report the total number of conversions attributed by a last-
touch system and by the multi-touch methodology from sec-
tion 3.2. The“Delta”columns show absolute and relative dif-
ferences between the two, where a positive delta means the
multi-touch model attributed more conversions than last-
touch. Within each group, we see that the total number of
conversions attributed by the last-touch model is influenced
more by ad propensity likelihood and last-touch propensity
than by P (Y |Ck). We can see though that these also have
the largest negative delta. The multi-touch method gener-
ally rewards the channels with the highest P (Y |Ck) and also
corrects for the last-touch bias.

These results are in line with probably the most impor-
tant of the four properties from section 2, i.e., that a chan-
nel should be rewarded proportionally to its ability to af-
fect the likelihood of conversion in a browser. As previously
discussed, the channels labeled 7 and 8 are rewarded more
for their ordering and volume than for their effectiveness in



Data Generating Parameters Attribution Results
Ad Simulated Last Last Multi

Channel Group Propensity Conversion Touch Touch Touch Delta Delta
Likelihood Rate Propensity Conversions Conversions N %

1 Gen Prospecting 5.0% 0.100% 0.2% 1,023 2,176 1,153 113%
2 Gen Prospecting 10.0% 0.080% 0.2% 1,932 3,284 1,352 70%
3 Gen Prospecting 10.0% 0.070% 0.2% 1,854 3,085 1,231 66%
4 Gen Prospecting 15.0% 0.050% 0.2% 2,491 3,434 943 38%
5 Gen Prospecting 15.0% 0.050% 1.8% 3,134 3,143 9 0%
6 Gen Prospecting 20.0% 0.010% 1.7% 2,998 736 -2,262 -75%
7 Gen Prospecting 20.0% 0.008% 6.7% 3,558 260 -3,298 -93%
8 Gen Prospecting 25.0% 0.008% 6.8% 4,406 409 -3,997 -91%
9 Retargeting 2.5% 0.500% 3.0% 3,921 5,673 1,752 45%
10 Retargeting 2.5% 0.400% 6.0% 3,375 4,489 1,114 33%
11 Retargeting 3.0% 0.300% 10.5% 3,468 4,068 600 17%
12 Retargeting 3.5% 0.250% 15.3% 3,728 3,997 269 7%
13 Search 0.5% 1.000% 23.7% 2,109 2,430 321 15%
14 Search 0.5% 2.000% 23.6% 5,329 5,045 -284 -5%

Table 1: Table of simulation parameters and attribution results on the simulated campaign dataset. The
first two data columns represent parameters used to simulate the campaign data, the column “Last-Touch
Propensity” indicates the likelihood we give the channel to be the last serving an ad, and the last four
represent results of the attribution analysis. We can see that the delta between methodologies is driven by
the ordering bias and P (Y |Ck).

the last-touch system. In the online advertising industry,
these two channels might be labeled “Carpet Bombers” due
to their tendency to serve many ads with relatively low effec-
tiveness. This type of strategy is generally misaligned with
the advertiser’s goals, and can result in a misallocation of re-
sources when the advertiser rewards these Carpet Bombers
at the expense of channels actually driving conversion.

4.4 Attribution in the presence of user con-
founding

The last set of data we analyzed was from advertising
campaigns run by M6D on behalf of four of its advertising
clients. In the prior analyses, we performed attribution in
the absence of any measured user-level confounding. How-
ever, as is often is the case with online advertising, various
strategies are employed to target specific segments of the
online population, and these segments often vary in their
organic propensity to convert. Prior studies on estimat-
ing the causal effects of display advertising present detailed
treatments of the various types of user confounding often
observed [22, 14, 4]. As was specifically discussed by Stitel-
man et al. [22], a type of user confounding that is often
present in online display advertising is the past interactions
between a user and the advertising client’s website. The
strategy that specifically targets users with observed prior
interactions is called Retargeting, and this analysis contains
data from four campaigns that employed the strategies of
Retargeting and display targeting as presented by [18]. The
specific confounder that we analyze in this section is a binary
indicator of whether or not the user had previously visited or
purchased from the clients site. In this analysis, we deviate
from prior studies of causal estimation in online advertising
in that we are attempting to estimate attribution allocations
of conversion credit among a set of converters that received
treatment, as opposed to measuring the effect of treatments
on conversion on a general segment of users.

To derive the attribution allocation for the confounding
property of having prior interactions with the advertising

client’s website, we treat the confounding variable (w) as
if it were another advertising channel. The attribution on
w can be interpreted as the expected marginal effect of w
across all users that were treated with ads. More formally:

Attribution(w) = E[E[Y |A,w = 1]− E[Y |A,w = 0]] (7)

As in the previous sections, we use our proposed Shapely
Value attribution formula to estimate the attribution allo-
cation to the confounding user segment of past client cus-
tomers.

Figure 2 shows the result of our retargeting confounder at-
tribution analysis on four campaigns run by M6D. In these
four campaigns, anywhere between 38% and 73% of con-
versions can be attributed to the confounding presence of
the user having had prior interactions with the advertising
client’s website. The implications of these results are that,
particularly in the presence of retargeting, advertisers are
often assigning credit to conversions that are driven more
by the user’s own volition to convert rather than the influ-
ence of advertising. Our proposed attribution methodology
may enable advertisers to better allocate dollars to advertis-
ing strategies that are effectively influencing internet users
to convert, as opposed to just capturing credit for the users’
present and uninfluenced propensity to convert.

5. CONCLUSION AND FURTHER WORK
The methods for multi-touch attribution presented in this

paper are motivated by a need to bring about more stan-
dardization and data-driven intelligence to the measurement
of online advertising campaigns. Better multi-touch attribu-
tion measurement is an often-cited top priority within the
industry. Solutions exist that offer firms alternatives from
the last-touch attribution model, though the variety of these
methods suggests a present lack of standardization within
the industry. Performance measurement is the economic
scorecard by which firms succeed or fail, so transparency
and standardization are needed. We presented the three
properties of section 2 to meet this need. We proposed the



causal approach to attribution as a means to align attri-
bution measurement with its intended purpose - that is, re-
ward advertising channels proportional to their effectiveness
in driving conversion events of interest.

The causal attribution methodology presented herein is
presented as a strawman to the problem of multi-touch attri-
bution. Unbiased estimation of all of the causal parameters
defined is a difficult task, both in experimental and obser-
vational data settings. We therefore developed alternative
approximating methods that we argue are more practical,
but practicality comes at the cost of fidelity to the true state
of things. We make simplyfing assumptions about the data
in order to fit attribution into a game theoretic framework.
We propose for future work a sensitivity analysis on how
varying these assumptions impacts final attribution alloca-
tions. Specifically, as we encode ad treatments by channel
as opposed to by ad, we do not explicitly account for vary-
ing average ad frequencies by channel (though implicitly,
frequency should be captured by P (Y |Ck)). We also allow
for subjectivity on the distribution of channel ordering Ω.
While this subjectivity is motivated by different interpre-
tations of “fairness”, an area for future work would be to
analyze the sensitivity of attribution allocations to varying
distributions of Ω. This line of research can be extended to
a game theoretic context, where long term equilibria are ex-
plored based on the strategic implications of Ω, as discussed
in section 3. Finally, in our analyses, we did not attempt to
make any strict causal interpretations on the results. Strict
causal estimation requires a more complex set of methods
that are beyond the scope of this paper. Another area for
further study is to compare both the distribution of payouts
and the total payout between the fully causal method we
define and the approximating methods.
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