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ABSTRACT

Most data mining research is concerned with building high-
quality classification models in isolation. In massive pro-
duction systems, however, the ability to monitor and main-
tain performance over time while growing in size and scope
is equally important. Many external factors may degrade
classification performance including changes in data distri-
bution, noise or bias in the source data, and the evolution of
the system itself. A well-functioning system must gracefully
handle all of these. This paper lays out a set of design prin-
ciples for large-scale autonomous data mining systems and
then demonstrates our application of these principles within
the m6d automated ad targeting system. We demonstrate
a comprehensive set of quality control processes that allow
us monitor and maintain thousands of distinct classification
models automatically, and to add new models, take on new
data, and correct poorly-performing models without manual
intervention or system disruption.

Categories and Subject Descriptors

I.5.4 [Computing Methodologies]: Pattern Recognition—
Applications

General Terms

Reliability, Measurement
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1. INTRODUCTION
Online display advertising, (broadly speaking, the show-

ing of banner ads on web sites) is a large and growing indus-
try, with consumer brands expected to pour almost US$30
billion into the medium in 2012 and over $34 billion in 2013.
[20] The problem of targeted display advertising involves de-
termining where, when, and to whom to show a particular
display ad on the Internet.
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Display targeting decomposes broadly into two broad cat-
egories: Retargeting, in which advertisers target users that
they have interacted with before (such as users who have
visited their website), and Prospecting in which advertisers
target users with whom they have no prior interaction in
order to improve the penetration of their brand.

At m6d, we operate a large-scale, machine-learning based
display advertising system which delivers tens of millions
of display ad impressions for hundreds of different advertis-
ers every day. We deal primarily in prospecting, meaning
that we must identify, for each brand, a set of previously-
unseen Internet users who will respond to the brand’s adver-
tising. Broadly speaking, this means that we classify hun-
dreds of millions of Internet browsers as either “good” or
“bad” prospects for each of our client brands. Delivering
strong classification performance in this environment poses
a number of challenges. For example:

• We operate thousands of simultaneous classification
models, since we train separate models for each brand
with which we work, and a model may contain millions
of features. Additionally, we need to be able to add

new models automatically as we take on more busi-
ness. The result is a dynamic, constantly-changing
model base that is too large for human oversight.

• We need to perform well over a broad range of clas-
sification tasks. The problems on which we train our
models vary wildly in terms of class skew (anywhere
from 1 in 100 to 1 in 100,000 examples are positive-
class) and the amount of available data. As a result,
there is no single “best” classification model for each
problem in our system.

• We need to maintain our thousands of models in the
face of changing internal and external system condi-
tions. That is, they need to run 24 hours a day in
a rapidly-changing environment in truly autonomous

fashion.

In our experience, meeting all of these demands requires
more than just a good classification model. It requires an
end-to-end data mining system with that has been designed
with maintenance and quality control in mind. Based on
our experience, we have devised a set of design principles to
help guide the design of large-scale autonomous data mining
systems like ours. The remainder of the paper presents these
principles, the architecture of our system and a number of
the quality-control processes that we have developed in ful-
fillment of the principles. Taken together, these processes
help us scale and maintain the system by allowing us to add
new models, take on new data, detect harmful changes in the



environment, and correct underperforming models all with
minimal or no human intervention.

2. DESIGN PRINCIPLES FOR AUTONOMOUS

DATA MINING SYSTEMS
In developing principles for autonomous system design,

we are concerned primarily with systems that maintain a
large and potentially dynamic set of independent models and
operate in near real-time. Examples would include systems
for electronic stock trading [17], fraud detection [6], churn
prediction [18], and online display advertising [8, 4].

As a result of their size and the diversity of their problem
space, these systems need to function largely autonomously
even in the face of changing data and populations. Specifi-
cally, a massive robust production system should:

Yield fail-safe predictions: The system must run well
for every stakeholder or user, maintaining acceptable worst-
case performance. Worst-case performance here has two dif-
ferent components: all models must perform well under nor-
mal operating conditions, and they must continue to per-
form well under reasonable deviations in the operating con-
ditions. That is, small changes in data distribution should
not destroy model performance.

In an ad-targeting system, it is better to provide solid
performance on every campaign than excellent performance
for apparel ads and poor performance for fast-food ads. A
fraud detection system needs to be able to deal with ordi-
nary activity fluctuations, such as those due to weekends
and holidays without issuing a bunch of false alarms.

Scale and easily extend: The system should be de-
signed for growth and be able to scale as the application
requires.

Exactly what it means to grow depends on the application,
but at the very least the system should be able to add new
users and models gracefully. In many cases the system must
also be able to incorporate new data.

Minimize human intervention: The system must be
able to hold all of the above properties without excessive
human intervention.

In other words, the processes that ensure fail-safe predic-
tions, scalability, and extensibility should be as automatic
as possible. Ideally, the system would be self-correcting but
where that is not possible, it should be self-diagnosing. This
way, when human intervention is required because of ex-
traordinary changes in the operating environment, the in-
tervention is minimal. For example, the system might auto-
matically look for significant changes in data distribution or
performance and issue alerts when they occur.

3. THE M6D TARGETING ENGINE
At m6d, we run an automated online display ad targeting

platform. Our customers are consumer brands; they pay
us to identify Internet browsers well-suited to their product
and target them with display ads. In order to provide the
highest quality of targeting to our customers, our system is
browser specific, dynamic, and brand specific.

Browser-specificity means that we target individual browsers
rather than static buckets of browsers, which allows for very
fine-grained targeting. It is worth noting that when we speak
of browsers, both here and throughout the paper, we are re-
ferring to an individual browser cookie. If an individual
web user deletes his or her cookies or uses a different com-

puter, the user becomes a completely different browser for
the purposes of our system. We use the words “browser”and
“cookie” interchangeably throughout the paper, and they al-
ways refer to the same thing.

Brand-specificity means that we build a separate classi-
fication model, using separate data, for each client,1 and
“dynamic” here means that we regularly re-evaluate and re-
score browsers. A browser who is a good target today may
be a bad target next week.

In order to achieve browser-level targeting, we collect browser-
level data. Specifically, we target browsers based on the ex-
istence, recency, and frequency of their visits to various sites
around the web. For each campaign we run, we place pixels
on the customer’s website. These pixels call back to m6d.com
and allow us to create or modify cookies for any user who
visits the customer site2. Additionally, we have pixels on
non-brand sites around the web, as well as data from some
third-party providers, which together present a snapshot of
the browser’s general web activity. It is worth noting that we
only store anonymized identifiers, rather than actual URLs,
at every point in our system.

Our primary classification model [4] computes a brand-
affinity score based on the user’s browsing activity. If many
of the URLs in a browser’s cookie correlate positively with
conversion, the browser gets a high score, and if the user’s
browsing history correlates negatively with conversion, he or
she gets a very low score. The targetable audience for a given
campaign is some number of the highest-scoring browsers,
depending on the campaign’s budget. What exactly counts
as a “conversion” is different for different campaigns, but
usually it requires a purchase from the customer web site.

3.1 System
The above-described classification procedure runs as part

of a large-scale, end-to-end data mining system. Our sys-
tem responds to billions of ad-targeting opportunities each
day and maintains well over 1,000 classification models while
operating hundreds of different advertising campaigns. We
interact with hundreds of millions of browsers per day, each
of which is scored for every campaign that we run.

A diagrammatic overview of our targeting system appears
in Figure 1. Our raw input data comes from two major
external sources: mapping pixels and action pixels. Action
pixels are placed on individual customer web sites, and we
use them both to define positive browsers and to track the
conversion rates associated with their campaigns. Mapping
pixels are placed on content-generating sites (e.g. blogs)
throughout the web, and they provide the visit history data
that forms the core of our classification models. A more
detailed discussion of action and mapping pixels and their
role in our system appears in [4]. We discuss two quality
controls on this data in Section 3.2.

These data form the basis of our low-level classification
model: a linear model over the sites that a browser has vis-
ited. Specifically, mapping data define the features for our
low-level model and action data define the class. The out-
put of the low-level model, as well as some other features

1This is both a performance issue and a client privacy issue:
data collected for one client should not not inadvertently
help its competitors.
2This assumes, of course, that the user accepts cookies. We
make no attempt to track users who have disabled cookies
or opted out of our tracking.
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Figure 1: Our targeting system

computed from the user’s cookie, form the basis of a “high-
level” linear ensemble model. Both the low-level model and
the ensemble model are available for user targeting. We dis-
cuss quality controls on the structure of the models them-
selves in Section 3.3. Once models are deployed, we evaluate
their performance on a sample set that is carefully designed
to represent the targetable population. The construction of
the sample set and its appropriateness for model evaluation
are discussed in Section 4.

It is worth briefly mentioning the metrics we use for eval-
uation, since we will need to quantify performance later in
the paper. The most important feature of our classifica-
tion model is its ability to rank. If the model ranks per-
fectly, then the optimal campaign-management strategy is
to target as many browsers from the top of the list as the
campaign’s budget allows. Since most of our campaigns tar-
get only a small fraction of the browser population, metrics,
(like ROC area) that evaluate ranking over the entire space
of model scores can be misleading [9]. As a result, we mea-
sure performance using a more focused metric: lift at 5%
of the population. Lift measures how many more convert-
ers (positive-class browsers) appear in the top 5% of model
scores than would be expected from a random classifier.

We also track the conversion rate within the targeted
browser population. The conversion rate for a campaign is
the proportion of the targeted population (i.e. the browsers
we have shown an ad) who convert within a short time of
seeing the ad. Conversion rates depend on many factors
other than raw classification performance, but since con-
version rate is important to our customers, it serves as a
measure of overall system performance.

In the absence of quality control, drastic changes in these
performance metrics are often the only way to detect prob-
lems. The processes outlined in the rest of the paper allow
us to notice changes before they affect performance.

3.2 Monitoring External System Interfaces
Our targeting system processes and incorporates a large

portion of its data from sources that are either partly or

entirely beyond our control. The pixels that we place on
client websites and throughout the web, as well as the data
we incorporate from external partners, are all critical to the
functioning of our system. Changes in our client and partner
systems, as well as incorporation of new partners, can lead
to system disruptions if problems are not detected early on.

To this end, we have developed two separate processes
aimed at monitoring this data stream. The first of these
simply monitors the rate of activity on each of our action pix-
els. Visits to action pixels are critical elements of our model
training because they form the “positive” browser popula-
tion for a particular campaign. However, since this visibil-
ity depends on web servers outside of our control, the data
stream could be disrupted at any time. Monitoring these
streams allows us to detect disruptions before they affect
system performance (ensuring fail-safe predictions) and re-
duces the human effort needed to investigate problems (min-

imal intervention).
Figure 2 shows performance statistics for a campaign that

was flagged by our action pixel monitor system. Figure 2(a)
plots the conversion rate among targeted browsers for one of
our campaigns over time. This is a commonly-tracked busi-
ness performance metric. Notice that it drops precipitously
around the middle of the graph and remains low throughout.

Figure 2(b) plots conversion rate against our model’s rank-
order performance and Figure 2(c) plots conversion rate
against action pixel activity for the same campaign and
time window. Taking the two plots together, we see that
both conversion rates and action pixel activity drop at ex-
actly the same time, but that model rank-order performance
(measured by lift) is not affected. The monitoring system
was able to detect that external data, and not model per-
formance, caused the drop in measured conversion rate.

In a smaller system, this type of anomaly could be de-
tected fairly easily by human observers. As the system scales
to handle more and more models, the cause of poor per-
formance (or apparently poor performance) for any single
model becomes increasingly difficult to identify. The instal-
lation of automated monitors such as these is an effective
way to scale the system rapidly while controlling the amount
of human effort actually required.

Monitoring external data sources.
A second monitoring process tracks the quality of map-

ping pixel (low-level feature) data from our external data
providers. As we mentioned above, we incorporate browser-
activity data from many different external sources. These
data improve our visibility into browser activity on the web
and provide most of the data that informs our models.

Monitoring our incoming data stream at the data-source
level has two goals. First, we need to ensure that each source
continues to provide quality data. Second, we need to under-
stand the risk that would be posed to our system by losing
a data source.

We incorporate data from dozens of external sources of
varying sizes. The most relevant statistics we track are:

• Reach: the proportion of our browser population on
which the source provides data. Since our data collec-
tion process seeks in part to increase the size of our
targetable audience, we track both the proportion of
the population that the source reaches in isolation and
the proportion of the population reached the source’s
data removed.



(a) Anomalous Conversion Rate (b) Model Performance vs. Conver-
sion Rate

(c) Pixel Activity vs. Conversion
Rate

Figure 2: Anomaly detected with action pixel monitoring.

reach Prop Good avg loss worst loss reach without

1 0.21 0.20 0.9964 0.9657 0.9999

2 0.22 0.00 0.9927 0.9649 0.9984

3 0.24 0.45 0.9928 0.9409 0.9998

4 0.26 0.05 0.9944 0.9642 0.9994

5 0.32 0.30 0.9951 0.9653 0.9996

6 0.37 0.40 1.000 0.9806 0.9997

7 0.89 0.80 0.9166 0.6659 0.9764

8 0.90 0.75 0.9109 0.5904 0.9862

9 0.89 0.70 0.9896 0.8445 0.9842

Table 1: Example data source quality report.

• Performance: In order to assess the quality of the
data provided by an individual source, we estimate
the performance of our model using only data from
that source. Similarly, to understand the risk of losing
a source, we estimate our model’s performance with
data from that source removed.

In combination, these reports show us both the extent to
which a particular source’s data is predictive, and the extent
to which it is redundant. Following these reports over time
assures us that each of the sources we use is continuing to
add value, even when all others are considered.

Table 1 shows some typical results. Each metric that we
compute is an aggregate over several campaigns. We present
both average-case and worst-case analyses because we need
to be mindful of any change that could potentially devastate
one of our campaigns.

We present an evaluation of several of our sources on a
diverse set of 20 campaigns. Data sources are anonymized
for privacy reasons and numbered in order of reach. The
other four columns are:

1. The proportion of campaigns on which the source’s
data provides a lift above a minimum performance
threshold. This is useful for spotting sources that are
especially predictive for a few campaigns.

2. The average performance loss after removing the data
source, measured by lift at 1% (1.000 indicates no loss,
0.900 would be a 10% loss).

3. The worst-case loss over all campaigns after removing
a data source. In larger studies, we sometimes report
5th or 10th percentile loss. Either way, this metric is
designed to ensure that there will be no crises if we
were to lose a source.

4. The proportion of our browser population that we still
reach when removing the source.

Most of the columns correlate relatively strongly with
reach, which is to be expected. The more data that comes
from a particular source, the more browsers it will reach, the
more it will contribute to performance, and the more it will
hurt to lose. Of particular interest to us are sources that

deviate from the general trend, as these sources are discern-
ably better or worse than their comparably-sized counter-
parts. In the table above, for example, source 3 contributes
significantly to many more campaigns than others of similar
size and source 6 has the lowest average loss in the table.

Our application of data source tracking is in many ways
more relative than absolute. If a particular data provider
costs more than its comparably-performing peers, the re-
port provides a quantitative basis for renegotiation or ter-
mination. If we notice a source’s performance consistently
degrading, we may try to engage the data provider and work
toward a technical solution.

Our data quality reporting improves both extensibility

and scale, and stability in our system. The ability to add
new data seamlessly is a major growth driver for the reach
of our targeting. Tracking the report’s contents over time
helps ensure that we are properly insulated against the loss
of a data provider and gives us the knowledge and freedom
to cut data providers, if necessary, if they become too ex-
pensive. As a result, we can easily take on new providers on
a provisional basis and evaluate their impact on our ability
to scale.

3.3 Monitoring Data Distributions
Once the raw input data that is discussed in the prior

sections has been transformed into labeled feature vectors,
it is available to train our models. At this point, we monitor
both the input data and the output models for significant
changes that may indicate systematic problems.

Model Monitor.
The quality-control process for our low-level models con-

sists of a series of tests on model coefficients. As we men-
tioned above, each feature in our low-level classification model
is a distinct (anonymized) URL and the model learns a single
coefficient for each feature.

Each time one of these models is re-trained, it must pass
two different quality checks before entering the production
system. The first is simply a paired t-test of the model
coefficients. The paired T-test tests the null hypothesis that
the mean difference between the paired observations is zero.
In our particular case, it tests whether the average change
in model coefficients between two successive model builds is
statistically indistinguishable from zero.

In an ideal world, where our model coefficients are unbi-
ased estimators of some true quantity, the null hypothesis
is exactly what one would expect: changes in model co-
efficients will amount to measurement error and the mean
difference should be zero. Thus, the t-test serves as a safe-



guard against significant and unexpected bias in the model
coefficients.

Second, we compute the rank correlation between sets of
model coefficients in successive builds. A drastic change
in the rank-ordering of the model coefficients indicates a
higher-than-expected variance in our coefficient estimates.

A failure in either of the tests simply indicates that the
model has changed appreciably and flags it for human ex-
amination. At this point, the system compiles a test failure
report including the relevant statistics (t-score and rank cor-
relation) as well as performance estimates for each (old and
new) model on a recent hold-out sample. If the examiner
approves the new model (usually because its performance is
similar or improves) then the model passes into production.
Otherwise, the most recent passed model remains until the
source of the change is thoroughly investigated.

It would certainly be possible to skip the t-test and the
rank test altogether and automatically pass any model whose
performance stays “roughly the same” or improves by some
measure, but there are advantages to our approach. The
t-test and rank test are much faster than computing model
performance. The latter requires scoring a sample of browsers
and then ranking them while the former needs only mathe-
matical operations on coefficients. As such, it is much more
efficient to compute performance only for those models that
fail the test.

Table 2 shows some results from one of our automated
modeling runs. The thresholds for anomaly-flagging were a
T-statistic greater than 2 in absolute value or a rank cor-
relation less than 0.7. Boldfaced models showed significant
improvement in model performance and so were allowed to
pass. The ability to identify potentially problematic models
cheaply, (both in terms of human and computer effort) is
a big part of our ability to maintain thousands of effective
models at once.

Feature Monitor.
A second similar process tracks the distributions and rank-

ordering ability of each of the features in our high-level
model as well as the model scores themselves. Specifically,
we track feature values, conversion rates, and lift at various
points on the distribution. This tracking allows us to see
changes in both the distributions of features and their rela-
tive importance to model performance over time. Since the
outputs or scores of our low-level models are also features of
our high-level model, those outputs get tracked as a part of
this process as well.

The ability to track changes in data distribution has many
well-documented benefits. If one can identify situations where
the input data have changed “significantly” in some sense, it
becomes easier to determine when to re-train models or de-
velop new ones. Our primary use of distribution monitoring,
however, is to learn about the behavior of our system.

For example, Figure 3 plots the 98th percentile low-level
model score for one of our campaigns over time. Since the
top 2% of our audience is approximately what we target
for the average campaign, this represents the approximate
bottom of our targetable range. The black vertical lines (on
11-14 and 1-11) mark dates when the low-level model was re-
trained. Notice that the distribution changes dramatically
a couple days after model retraining and then stabilizes a
short time after. In our experience, stabilization takes about

Figure 3: 98th percentile of a model score distribu-
tion over time. Black lines represent times of model
retraining.

Figure 4: An emerging relationship between ID and
model score can indicate a system change.

three to seven days, indicating that we should refresh our
classification thresholds about a week after any retraining.

Figure 4 presents another interesting result. It shows the
90th percentile low-level model score (calculated across a
sample of about one million targetable browsers) plotted
against the internal ID number for the campaign associated
with the model. The campaign ID is a meaningless primary
key in our database, but since it is auto-incrementing, it
is monotonic in the age of the campaign. That is, newer
campaigns have higher IDs.

For the vast majority of campaigns, (up to about 200)
there is absolutely no correlation between campaign ID and
model score, exactly as we would expect. Conversely, cam-
paigns with IDs greater than 200 appear to cluster and give
very high model scores.

The phenomenon turned out to be a bug in the model-
builder that affected any very-new campaigns that were also
using very-new data. We fixed it very quickly after it was
discovered. This result brings up an interesting point about
the role of identifiers in maintaining data mining systems.
We stressed earlier that automated systems need to remain
stable, behaving relatively consistently in the face of “ordi-
nary” changes in the operating environment. Figure 4 is a
very clear violation of the stability principle. Our input data
changed slightly (we were simply bringing on more data than
we had in the past), but the behavior of the system changed
substantially. The emergence of correlation between identi-
fiers and system outputs strongly suggests that something
fundamental in the system has changed.

3.4 Correcting underperforming models
Up to this point, we have discussed quality controls that

take place prior to model construction. One might think of



(a) T-test

ID T Statistic Old lift New lift
2829 2.7595 4.7579 2.1362
3132 5.0807 1.0830 1.4904
3579 2.1367 6.7901 4.7616
3934 2.4460 1.3513 2.0831
659 4.4058 8.7298 3.4879

(b) Rank correlation

ID Rank Corr Old lift New lift
2679 0.6581 0.7860 0.7718
274 0.6726 1.9479 0.9114
2829 0.6293 4.7579 2.1362
3132 0.6925 1.0830 1.4904
3577 0.5651 10.7136 5.4022

Table 2: Sample model monitoring results.
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Figure 5: Binned estimates of actual conversion rate
vs. quantile of score for a recalibration candidate
in our system. The model mostly rank-orders well,
but the highest-scoring browsers perform relatively
poorly.

these controls as guarding against the pollution of innocent
models by bad data or broken processes. The final quality
control in our pipeline, however, goes beyond this: actually
correcting for some degree of error in the models.

Both our low-level and ensemble classification models are
ultimately linear functions of their constituent features. This
decision has a lot of practical advantages. In addition to rel-
atively strong performance, the storage requirements for the
models are very low (just tables of coefficients) and scoring
large groups of browsers is very efficient, requiring a single
database join.

The downside to this approach is that, occasionally, the
relationship between the conversion rate and model features
is decidedly non-linear. In this case, our classification mod-
els will rank-order sub-optimally, with the highest-scoring
browsers converting at less-than-optimal rates while lower-
scoring browsers perform better. Similar behavior has been
observed elsewhere, including the 2008 KDD Cup [14].

Since it is critical for us to perform well on every cam-
paign (fail-safe predictions), we need to fix sub-optimal per-
formance whenever we can. However, since we lack the
computational resources to perform expensive searches over
complicated hypothesis spaces to find the best model, we
develop a novel re-calibration procedure that allows us to
adjust the rank-order of suboptimal models when necessary
without affecting any of the other models in the pipeline.

To see why such a procedure is necessary, simply observe
Figure 5, which shows conversion probability, estimated in
equal-frequency bins, against score quantiles from one of our
low-level models. The top few quantiles of classifier score
convert at a lower rate than the preceding quantiles despite
the fact that the majority of the classifier scores rank or-
der nicely. In this case the quantile-based conversion rates
in Figure 1 could now be used to recalibrate the algorithm
by re-ranking the browsers by estimated conversion rate.
For most of our models, however, conversion rates are much
smaller than 1% - 4%, and often smaller than 1 in 1,000.
In this case, the bucketed quantiles will not provide good
estimates of conversion rates. For this reason we use a gen-
eralized additive model (GAM) [10] with smoothing splines.

Figure 6(a) shows conversion rate as a function of score,
for the campaign in Figure 5, as predicted by a GAM.3 We
recalibrate the scores by using the probabilities predicted
by the GAM as the scores rather than the scores from the
initial classifier. In this example those individuals in the
top 1% as scored by the smoothing algorithm (the scores
between the dotted lines on the plot) converted at a rate of
about 4.0% while the top 1% of people scored by the initial
algorithm (those scores to the right of the solid vertical line)
converted at a rate of 2.6%. Thus, by using the re-calibrated
scores we end up with a group of people that convert at a
50% higher rate than by using the initial algorithm alone.
Figure 6(b) shows a campaign where the recalibrating algo-
rithm does little to change the ranking of the browsers since
those ranked in the top 1% by the GAM (between the dot-
ted lines) have a large amount of overlap with the top 1%
according to the initial algorithm (to the right of the solid
vertical line). The difference in the conversion rate in this
case is negligible (.159% vs .157%). In many other cases the
score itself is monotonic in conversion rate and as a result
the recalibration does not affect the ranking at all.

The use of GAM for re-calibration has a significant advan-
tage over other recalibration approaches in the literature,
such as Logistic [15] or isotonic [13, 5] regression in that its
fit is potentially non-monotonic, allowing it to smooth over
and reorder poor-performing regions. However the use of
GAM is not magical. In practice, any smoothing method
which can predict probabilities from a continuous feature
will do.

In summary, we created a two stage classification algo-
rithm with the following stages:

1. Fit an initial classification model on the training data.
2. Recalibrate the initial estimator using a smoothing al-

gorithm, such as GAM, and use the predicted proba-
bility as the new score.

In situations where the relationship between the scores and

3Estimates were generated using the mgcv library in R.
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Figure 6: GAM-predicted conversion rate vs. model score. Dashed lines enclose the top 1% of the population
according to the GAM, while the black line marks the 99th percentile model score.

the conversion probabilities are monotonic this method does
not change the ordering, but it will reorder those classifiers
where the relationship is non-monotonic. By running this
algorithm in production after the initial classifier is fit we
can recalibrate its scores automatically and provide higher-
quality models for the affected campaigns.

The ability to do this automatically and on demand has
significant practical benefits for our system. It improves our
ability to scale the system (we can take on more campaigns
without changing models), maintains the stability of the sys-
tem, since we can re-calibrate scores when things change,
and helps make model predictions more fail-safe by allowing
us to re-order model scores.

4. CONSTRUCTING REPRESENTATIVE

BROWSER SAMPLES
Several different pieces of our system rely on having a

“representative”sample of our reachable browser population.
The construction of such a sample is complicated by a couple
of factors. First, any sample of Internet browsers is naturally
prone to activity bias [1]. Care must be taken to ensure that
active browsers are not overrepresented in the sample. The
second complicating factor is cookie decay. Since we respect
a browser’s right to delete his or her cookies (i.e. do not
fingerprint or reconstruct cookies), a browser gets a new
identifier in our system every time it clears its cookies. In
the worst case (where it rejects cookies entirely), a browser
may get a new identifier for every interaction. As a result, a
large majority of browser identifiers are assigned to cookies
that we see exactly once.

Broadly speaking, there are two different methods for cor-
recting these types of bias: modeling and sampling. The
Heckman correction [11] and its variants, for example pro-
duce unbiased estimates of the quantity of interest (in this
case conversion rate) by explicitly modeling the selection
process and including an estimate of the selection probabil-

ity in the final classification model. Prior work [2, 19] has
shown that this approach is effective in classification set-
tings, but the size of our data and the number of factors
influencing selection make the construction of an effective
model difficult.

The second option is to sample more intelligently. The

ultimate goal of any procedure we implement is to produce
a representative sample of targetable browsers: browsers to
which, broadly speaking, we could conceivably serve an ad.
The set of such browsers changes over time, of course, as
users get new computers or clear their cookies, but a very
simple proxy for the targetable population is the set of browsers
that actually saw an ad on a given day.

This approach is attractive on several levels. The set of
browsers that saw an ad is certainly a subset of the tar-
getable browser population. If any targetable browser is
just as likely to see an ad as any other targetable browser,
it is a perfectly representative sample of the population.

Unfortunately, this is not the case. Some browsers in our
system qualify for dozens of campaigns, and these browsers
are much more likely to see an ad than browsers who qual-
ify for only a few campaigns. Additionally, this kind of
impression-based sampling is heavily influenced by exter-
nal factors. Whether a qualified browser actually sees an ad
depends, among other things, on the amount of competition
for the browser and how many ads we have already shown
that day.

Our sampling algorithm accounts for these difficulties in
the following manner. Each day, our system selects a ran-
dom sample of browsers that meet the following criteria:

1. The browser is qualified for at least two of our cam-
paigns. This guarantees that the cookie has survived
long enough and accumulated enough information to
be targetable.

2. We interacted with the browser on the day in question.
This guarantees that the cookie is still active.

We find that this sampling methodology produces training
and evaluation samples that generally outperform impression-
based sampling. A fairly straightforward explanation ap-
pears in Figure 7, which shows distributions of a few high-
level model features over both impression and qualification
samples. It is easy to see that the qualification sampling
gives access to a wider range of feature values, providing a
more inclusive sample than impression-based sampling. In
particular, the qualification sampling tends to get more rep-
resentation from lower-valued regions of the feature space,
which tend to contain less active browsers.

Performance estimates on this sample of browsers corre-
late surprisingly well with the “real” performance on which
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Figure 7: Distributions induced by different sampling schemes. Impression-based sampling tends to exclude
less active browsers (i.e. those with lower feature values).

Figure 8: Correlation of sample performance esti-
mates and real performance.

Figure 9: High-level model performance before
and after switching to qualification-based sampling
(black line).

we are ultimately evaluated. Figure 8 shows a plot of pre-
dicted performance against real-world performance on our
entire browser population. The two quantities are correlated
with r

2 = 0.75 and a Spearman rank coefficient of 0.8.
Further validation is available in Figure 9, which shows

shows a plot of our median high-level model performance
over time. On the date marked by the black line, we be-
gan training our high-level models on a qualification-based
rather than an impression-based sample. The cutover was
gradual, but after fully implementing this sampling proce-
dure for training, the performance of the high-level model
increased more than 50% from 1.88x (lift over untargeted-
browser performance) to sustained performance above 3.0x
going forward.

A consistent, automated, representative sampling proce-
dure is, in our opinion, a critical component in a large-scale
data mining system. Having a readily available automated
sample ensures not only that the evaluation of new methods
is consistent and correct and contributed to the development
of most of the other quality-control systems described here.

5. RELATED WORK
We are not aware of any papers that discuss quality con-

trol in deployed systems as large as ours. Sculley et al [16]
present a system for detecting malicious ads that works in
a semi-automated fashion (consistent with “minimal inter-
vention”) and trains thousands of models (consistent with
“scale”). The authors say that automated monitoring and
recalibration tools are important aspects of their system,
but they do not give any implementation details.

Ghani and Kumar [7] discuss an interactive quality-control
improvement to a health-insurance-auditing application. They
augment an existing classifier (which predicts overpayments
in health insurance claims) with a “more-like-this” feature
to reduce the time human auditors spend auditing claims.

Moreno-Torres et al [12] report on a situation where data
generated for the same classification task from two different
research labs were incompatible. In other words, the clas-
sifier trained on one lab’s data was completely useless for
the other lab even though the features and label were the-
oretically the same. They develop a genetic-programming-
based feature-engineering algorithm that solves the problem
in their case.

The problem of change detection has attracted consider-
able attention, although most of it in a research setting. The
most relevant of these deal with change detection in produc-
tion systems. Curry et al [3] develop a change-detection sys-
tem for identifying anomalies in credit card payment records
and Fawcett and Provost [6] describe a system for fraud de-
tection from cellular phone records. Both of these systems
serve to automatically detect adverse system changes with
minimal human intervention. In both of these cases, how-
ever, change detection is a problem in and of itself, rather
than a quality control within a production system.

6. PRACTICAL GUIDANCE
So far we have given a very general set of principles along

with a very specific description of our own production sys-
tem. The purpose of this final section is to offer a few prac-
tical suggestions for someone trying to implement our prin-
ciples from scratch. The following simple suggestions, based



on our experience, should help practitioners trying to get a
new system off the ground.

• Closely monitor data feeds from any external source,
including the Internet. Unless you control the data-
generating process completely, it will eventually change.

• Monitor interfaces between critical internal systems.
In a large evolving system, even intentional changes
may have unintended consequences. It is best to de-
tect these as quickly as possible.

• Work, then scale, then excel: It is easier to im-
prove a system that provides adequate performance at
scale than to scale a system that was not designed to
grow. For example, simple models are fast to train,
fast to score, and can be enhanced on a case-by-case
basis as necessary.

• Build a sandbox: A consistent, automatically-generated
data sample saves time when experimenting with new
ideas, but also helps diagnose problems with the exist-
ing system. Data that is pulled the exact same way for
two months makes identifying changes much easier.

• Bound your error: The simplest realization of the
fail-safe predictions principle simply is to ensure that
even dreadful model predictions cause limited damage
to your system. We do this ourselves in a number of
ways, for example by limiting the number of ad im-
pressions any one browser can see.

7. CONCLUSION
Operating an end-to-end data mining system at scale re-

quires more than just clever feature engineering or brilliant
algorithmic design. The consistent need to grow and change
the system while maintaining or improving performance means
that quality control becomes increasingly important as the
system matures.

In an effort to energize and focus the discussion of quality
control in the data mining community, we have proposed
three desirable criteria for a self-sufficient data mining sys-
tem. Next, we present the quality-control processes that we
have developed for our online display-ad targeting system
in accordance with the principles outlined above. Many of
these controls developed because of our need to maintain
thousands of classification models simultaneously, but they
should be useful in any system where the number of distinct
components makes direct human oversight impractical.

We have automated monitoring of all of our external data,
which allows us to scale and extend the system without
increasing the quality-control burden on human operators.
We monitor and flag significant changes in our model coeffi-
cients, which helps ensure that our system is stable: that is,
that it continues to operate well in a changing environment.
We have developed an algorithm, based on generalized addi-
tive models, which re-calibrates the output of a classification
model and improves its rank-ordering performance. This
naturally keeps performance “fail-safe”, but also helps the
system scale, as we can add new customers and be confident
that our models will continue to perform well.
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