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ABSTRACT

To conduct a successful targeting campaign in mobile advertising,
one needs to have reliable location information from real-time bid
requests. However, many real-time bid requests do not include
fine-grained location information (such as latitude and longitude)
because (1) the device or the application did not collect that infor-
mation or (2) some components of the real-time bid ecosystem did
not forward that information. In this paper, we present a three-step
approach that takes as input hashed public IP addresses in real-time
bid requests and (1) creates a weighted heterogenous network, (2)
applies network-inference techniques to infer fine-grain (but pos-
sibly noisy) location information for the hashed public IPs, and
(3) uses k-nearest neighbor and census data to assign census block
group IDs to those hashed public IPs. Our experiments on two
large real-world datasets show the accuracy of our approach to be
over 74% for hashed IPs (regardless of their type: mobile or non-
mobile) when basing the inference on only hashed public mobile
IPs. This is notable since our inference is over 212K possibilities.

Categories and Subject Descriptors

H.2.8 [Database Applications]: Data mining; E.1 [Data Struc-

tures]: Graphs and networks

General Terms

Algorithms, Design, Performance, Experimentation

Keywords

Location inference; location-based services; mobile mining

1. INTRODUCTION
When targeting advertisements for mobile devices, having reli-

able, fine-grained location information for real-time bid (RTB) re-
quests is an important part of conducting a successful campaign.

∗We thank Jason Dolatshahi and William Payne for helping us
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Media, now part of Dstillery.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACM SIGSPATIAL LBSN ’13, November 5, 2013, Orlando, FL, USA
Copyright 2013 ACM 978-1-4503-2533-2/13/10 ...$15.00.

However, many RTB requests either do not include location infor-
mation or the information is too coarse-grained (e.g., it is at the
city or zip-code level). In a recent collection of approximately 44
million RTB requests, 37% of them had no location information.
Based on the traffic type, the percentage of requests without loca-
tion information can be as high as 84%.1 There are many reasons
why RTB requests do not have fine-grained location information.
These reasons can be divided into two broad categories: (1) the de-
vice (e.g., iPhone) or the application (e.g., the Twitter mobile app)
did not collect the location information; and (2) one or more com-
ponents of the RTB ecosystem did not forward this information.
Note that due to IP address translation, targeters cannot simply look
up fine-grained location of IP addresses in common databases.

We present a fast and scalable approach to solving the problem
of inferring locations of (hashed) IP addresses in real-time, mo-
bile bid requests at the Census Block Group (CBG) level. A CBG
typically covers a contiguous area and contains between 600 and
3,000 people; the United States is divided into approximately 212K
CBGs.2 Our working assumption is that CBGs comprise location
information fine-grained enough for useful hyperlocal ad targeting,
yet coarse-grained enough to avoid major privacy concerns.

Our proposed approach has three steps. First, we create a weighted
heterogeneous “movement” network with hashed IP addresses as
nodes. A node u has an edge to a node v if the same device uses
u at time t1 and then uses v at time t2 (where t1 < t2)—i.e., the
device moves from u at t1 to v at t2. The novelties of our move-
ment network are: (a) the separation of mobile and non-mobile IP
addresses; and (b) the storing of inter-arrival times (IATs) and num-
ber of movements on each edge of the network. Second, we apply
local relational classifiers with movement- and IAT-based weights
to infer the fine-grained location of the hashed IP addresses without
location information. This fine-grained information can be noisy.
Third, we assign CBG IDs to the predicted (and possibly noisy)
fine-grained location information by using a new procedure that
employes k-nearest neighbor and census data. Based on extensive
empirical studies, our accuracy on inferring CBG IDs for all hashed
IP types is over 74% (when basing the inference on only mobile
IPs). This is notable since we are estimating the correct CBG out
of approximately 212K possibilities.

The main contributions of our work are as follows:

• We introduce an efficient and effective solution for inferring
fined-grained location information for hashed IP addresses in
RTB requests. Our solution has three components:

1. Given RTB requests, we build a weighted heteroge-

1Nowadays, traffic from mobile applications tend to have more lo-
cation information.
2http://census.gov



neous movement network among hashed public IP ad-
dresses.

2. We employ local network-inference techniques with
weights based on the number of movements and the
inter-arrival time distributions to predict latitude and
longitude values for hashed public IP addresses with
no location information.

3. We introduce a k-nearest neighbor procedure to assign
CBG IDs to predicted (and possibly noisy) latitude and
longitude information inferred in Step 2.

• We demonstrate the effectiveness of our approach on two
large real-world datasets with millions of RTB requests and
observe an accuracy of over 74% for all hashed IP types
(mobile and non-mobile) when basing the inference on only
hashed public mobile IP addresses. Our results are notewor-
thy since we are inferring the correct CBG out of approxi-
mately 212K possibilities.

The paper is organized as follows. Next we discuss background
and related works. In Section 3, we introduce our proposed method.
Section 4 presents our experiments and discussion. We conclude
the paper in Section 5.

2. BACKGROUND AND RELATED WORK
The ecosystem for mobile RTB advertisement has the follow-

ing seven major components (which form a chain): (1) Advertisers

such as Nike, (2) Trading Desks such as Cadreon, (3) Demand-Side

Platforms such as Adform, (4) Ad Exchanges such as DoubleClick,
(5) Supply-Side Platforms such as Admeld, (6) Publishers such as
NY Times, and (7) Consumers.3 The datasets used in our work
consist of RTB requests, which were collected from various popu-
lar Supply-Side Platforms (a.k.a. SSPs).

Accurately inferring the location of an IP address is important in
many applications. To the best of our knowledge, this work is the
first of its kind that uses just the structure of an IP×IP movement
graph to infer locations, in terms of Census Block Group IDs, for
hashed public IP addresses. Wong et al. [9] propose a framework
for locating IPs by representing node positions through regions, ex-
pressing constraints as areas, and computing locations by solving a
system of geometric constraints. In another study, Wang et al. [8]
develop a client-independent geolocation system. Both of these
methods rely on pings to estimate the round trip time between two
machines. They also rely on landmarks, which are collected man-
ually. Our approach does not have these limitations.

Balakrishnan et al. [1] study geolocating IP addresses on mo-
bile networks. They examined the properties of cell-phone IP ad-
dresses. Their study showed that mobile IPs are ephemeral and
their addresses are itinerant. For example, an individual cell phone
can report different IP addresses to various servers within a short
period of time. This phenomenon makes it very difficult to track
mobile devices without having any software on them, which is our
scenario. Furthermore, the same public IP address is often used by
many devices. Metwally et al. [5] estimate the number of users of
an IP address by keeping track of the application-specific traffic,
which can be costly.

There are previous studies that use social interaction to model
user movement and predict the future location of a user [2], [6], [3].
These methods require information about the social relations be-
tween users through phone calls or friendships on an online social
network. In our work, we do not have access to such information.

3A nice picture of this ecosystem is available at http://
eliassi.org/businessinsider_mobile_rtb.pdf.
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Figure 1: A small sample of an IP×IP movement graph. The

circle nodes are non-mobile IPs. The diamond nodes are mobile

IPs. The mobile IPs are time-stamped because they are tran-

sient. To avoid clutter, we do not show the weights on edges,

which are the number movements between two nodes and the

inter-arrival times for all movements on an edge.

3. PROPOSED METHOD
Before we start this section, it is important to note that the IP

address which one finds when one looks up the address from one’s
computer (e.g., via ipconfig) is not the IP address that is seen
in an RTB request. An address translation is done between the two,
which results in a public IP address, provided by the Internet Ser-
vice Provider. This public IP is the address that the outside world
sees (e.g., a Web server sees when one logs into its Web site). These
public IP addresses are then hashed.

Our proposed method has three steps: (1) building IP×IP move-
ment graph, (2) employing local relational classifiers to infer fine-
grained (and possibly noisy) location information, and (3) assign-
ing Census Block Group (CBG) IDs as proxies for location.

3.1 Building the IP×IP Movement Graph
Given that we are interested in inferring the location of an IP ad-

dress, we represent the RTB requests as a network of movements
between heterogenous IP nodes.4 In particular, we have two dif-
ferent types of IP addresses: mobile and non-mobile. Examples of
mobile IP addresses are ones with connection types 3G, 4G, LTE,
etc. Examples of non-mobile IP addresses are ones with connection
types broadband, xDSL, cable, etc. Figure 1 shows a small sample
of an IP×IP movement graph.

Figure 2 illustrates how we determine the type of an IP address.
We initially relied on a 3rd party database to classify mobile and
non-mobile nodes. However, we noticed that a non-negligible per-
centage of the IPs classified as non-mobile by the 3rd party database
appeared outside of a radius r in 24 hours, which is a characteristic
trait of a mobile IP (see Section 4). So, we added an extra condi-
tion on whether an IP is non-mobile (i.e., did the IP appear outside
radius r in 24 hours?). We attempted various radius values in our
experiments (See Section 4). However, the default setting for r is
100m because of the following reasoning. Non-mobile devices use
Wi-Fi routers to access the Internet. The range of Wi-Fi routers
depends on the routers’ antenna technology and surrounding con-
dition. The range of current routers is normally less than 100m.5

Two IP nodes, A and B, have an edge if the same network ex-

4We use the terms ‘network’ and ‘graph’ interchangeably.
5For more details, see http://compnetworking.about.
com/cs/wirelessproducts/f/wifirange.htm.
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Figure 2: Decision procedure for determining if an IP address

is mobile or non-mobile. The extra condition on whether an

IP is non-mobile is added because mobile IP addresses tend to

change position more quickly than non-mobile IP addresses [1].

The default value for r is 100m (which is the range of current

router technology).

change identifier6 (a.k.a. NUID) uses A at time t1 and then uses B
at time t2 (where t1 < t2). Since we are using IP addresses as prox-
ies for locations, a mobile IP address A at time ti is represented by
a node 〈A, ti〉 and a non-mobile IP address B at time tj is repre-
sented by B only (see Figure 1). This asymmetry is due to mobile
IP addresses being more transient than non-mobile IP addresses.

The inter-arrival time of an NUID’s movement from A at t1 to B

at t2 is stored on the edge. We distinguish between three different
types of movements: (1) movement between two non-mobile IP
addresses, (2) movement between a non-mobile IP and a mobile IP
address, and (3) movement between two mobile IP addresses. In
the last case, two mobile IPs are represented by a tuple 〈A, t1〉 and
〈B, t2〉; and, we only consider this a movement if A is different
from B. We stress this condition since there are cases where one
NUID is involved in two consecutive RTB requests from the same
hashed mobile IP address. For example, at time t1 we observe an
RTB request involving an NUID u at hashed mobile IP address A
and this same NUID u is observed again in another RTB request
at time t2 with the same hashed IP address A. Due to the way we
represent the mobile IP addresses, this NUID appears as 〈A, t1〉
and 〈A, t2〉, but we do not consider this as a movement and do not
add an edge between them.

There may be multiple movements between two nodes in our
IP×IP movement graph. For each edge in our movement graph,
we keep track of the number of movements and the inter-arrival
times (IATs) on that edge. Number of movements is the number of
times that we observe one NUID use the first IP and then change (or
move) to using the second IP. The IAT of a movement is the time
gap between the appearances of the NUID when it changes from
one IP address to another. Since there are multiple movements be-
tween IPs, we actually have distributions of IATs over the edges.
In our experiments, we only use the minimum IAT of all the move-
ments on an edge since a smaller IAT generally indicates a smaller

6A network exchange identifier is associated with each device.
This information is not always provided.

distance.

3.2 Employing Local Relational Classifiers
When inferring location on the IP×IP movement graph, it is de-

sirable to conduct inference locally. This is because (1) the farther
out one moves in the movement graph, the farther away one gets
geographically; and (2) the movement graph is often very large so
non-local approaches can be computationally burdensome.

For our local relational classifier, we utilize wvRN, which stands
for weighted-vote Relational Neighbor classifier [4]. wvRN esti-
mates class membership probabilities using the assumption of ho-

mophily (i.e., like attracts like) in the network data. Given the exis-
tence of homophily, wvRN performs well when compared to more
complex classifiers [4].

The key for our inference problem is what weight to use in wvRN.
We consider two weights: (1) number of movements and (2) min-
imum IAT. We refer to the former as wvRN(numMoves) and the
latter as wvRN(minIAT).
wvRN(numMoves) uses the number movements between two

IP addresses as the weight in wvRN. The intuition behind this weight
is that a node v will be closer in distance to its neighbors with
whom it has more movements. So, wi is the number of movements
between v and its i-th neighbor.

Our IP×IP movement graph, like many other real-world graphs,
is very sparse. That is, it has many edges with only one movement.
This inspired us to try another weight based on IATs.
wvRN(minIAT) uses the normalized minimum IAT between

two IP addresses. It makes sense for the IAT to be a good indicator
for the distance between two nodes since the longer the IAT, the
longer distance the user has potentially moved (sans traffic). We
use minIATv to denote the minimum IAT on all edges of a node
v. Then, the weight on the movement between v and its neighbor i
is defined as

wi =
minIATv

min(t), ∀t ∈ IAT(v,i)

where IAT(v, i) returns the list of IATs between v and i. Note that
in the above formula, the denominator is never strictly smaller than
the numerator. So, the largest value for wi is 1, indicating that there
was a movement between v and its neighbor i that took minIATv

time.
wvRN Equations. Given a node v, its neighbors NBR(v) who

have location information, and the weights on the edges between v

and its neighbors (where wi is the weight on the edge from v to its
i-th neighbor), we use the following equations to predict latitude
and longitude values for v:

lat(v) =

∑
i∈NBR(v) wi×lat(i)
∑

i∈NBR(v) wi
; lon(v) =

∑
i∈NBR(v) wi×lon(i)
∑

i∈NBR(v) wi

Restricting Inter-arrival Times on IPs with One Known Neigh-

bor. Like most real-world graphs, our IP×IP movement graph has
a skewed degree-distribution (see Figure 6), with many nodes hav-
ing only one neighbor. By putting a constraint on the IAT of IPs
with only one neighbor (e.g., that the IAT has to be less than or
equal to 60 min), we can effectively prune the noisy links from the
IP×IP movement graph. The only issue here is that with pruning,
one also reduces the size of the inference set. We explore this issue
in-depth in Section 4.

3.3 Assigning Census Block Groups as Prox-
ies for Location

We infer the location of a hashed public IP address at the Census

Block Group (CBG) level instead of the 〈latitude, longitude〉 level.



The US Census Bureau defines a census block as the smallest geo-
graphic unit used in tabulation of data collected from all residences.
The US (including Puerto Rico) has about 8.2M census blocks.7 As
the name suggests, a CBG is a group of census blocks, which are
close geographically and never cross state or county boundaries.
The US (including Puerto Rico) has about 212K CBGs, each con-
taining an average of 39 blocks and between 600 and 3000 people.8

We decided to infer location at the CBG level because (1) it pro-
vides a more consistent labeling for location of IP addresses; (2) it
allows incorporation of external data that utilize census data such
as demographics; and (3) in the majority of mobile applications
(e.g., mobile ads), this level of location information is sufficient for
a successful campaign.

Given the predicted 〈latitude, longitude〉 of an IP address from
wvRN (see previous section), we need a method for assigning a
CBG ID to it. Our procedure, a k-nearest neighbor approach, is as
follows:

Inputs:

• Location of interest, loc = 〈lat, lon〉

• For each CBG i in the US, i’s centroid ci = 〈lati, loni〉 and
i’s area ai in km

Output: The CBG ID that contains loc

Procedure:

1. C ← centroids of the k nearest CBGs to loc

2. For j in C do

dj ← dist(loc, cj) // distance between loc and the centroid
of the j-th nearest CBG

rj ←
√

(
aj

π
) // CBG radius of the j-th centroid

ratioj ←
dj

rj
// ratio of distance to radius

3. Return the CBG ID corresponding to min(ratioj), ∀j ∈ C

Since we compute the latitude and longitude of an IP based on
neighboring IP addresses’ latitudes and longitudes, a location may
be returned that is in the middle of a lake, forest, or desert. In such
cases, the minimum ratio is high; and it is unreasonable to return a
CBG ID. Thus, our algorithm will return “unknown” in such cases.

Specifically, if the minimum ratio (
dj

rj
) is over a threshold t, our

procedure returns “unknown” for the CBG ID of the given IP. In our
experiments, the percentage of CBG IDs returned as “unknown”
was less than 1% with k = 5 and t = 2. See Section 4 for details.

4. EXPERIMENTS
This section is organized as follows: data description, experi-

mental setup, results, and discussion.

4.1 Data Description
We conducted experiments on two real-world datasets. Table 1

lists the basic characteristics of each dataset. For our experiments,
we only consider RTB requests with valid United States NUIDs.
Recall that NUID is the network exchange identifier. Each device
has an NUID; but it is not always in the RTB request. Also, NUIDs
for the same device may be different across different SSPs.

7http://en.wikipedia.org/wiki/Census_block
8These statistics are from the 2000 census.

Data name Oct-2012 Feb-2013

Collection date 10/01/2012 02/06/2013
(Monday) (Wednesday)

# of RTB requests with 44.1M 21.5M
valid USA NUIDs

% of RTB requests without location 36.5% 56.7%

% of RTB requests from mobile IPs 57.3% 47.7%

Table 1: Some characteristics of our two datasets: one collected

on 10/01/2012 and the other on 02/06/2013. The number of

real-time bid requests decreased by about 51% from October

2012 to February 2013 due to reductions from the supply-side

providers. However, the number of requests without location

information increased by about 55%. The number of requests

from mobile IPs decreased by about 17%. We collected data

from another day (a Saturday) in February 2013 and the char-

acteristics were similar to 02/06/2013.
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Figure 3: Data characteristics per supply side provider (SSP).

(a) SSP4 provides about 50% of the requests for both datasets.

(b) Among the requests with location information, SSP4 and

SSP7 dominate. (c) Among the requests without location infor-

mation, SSP4 dominates.



Homophily measured on... Oct-2012 Feb-2013

All movements 96.5% 90.8%

Mobile to mobile movements 98.6% 99.2%

Non-mobile to non-mobile movements 86.9% 78.1%

Table 2: Homophily in IP×IP movement graphs. Homophily is

defined as the number of movements whose (IP) endpoints are

from the same SSP divided by the total number of all move-

ments. Homophily levels are high in both datasets. Movements

between mobile IPs have very high homophily.

Figure 3 provides details about the datasets such as distribution
of RTB requests over SSPs, and the conditional distributions of
RTB requests over SSPs given only the requests with location, and
then given only the requests without location information. Recall
that we may not have location information for a request because
(1) the RTB system did not forward it, (2) the SSP did not forward
it, (3) the device did not capture it, or (4) the user did not enable
location-based services.

Figure 4 shows the distribution of requests with and without lo-
cation information per SSP. All requests from some SSPs (e.g.,
SSP1 and SSP3) are without location information. On the other
hand, some SSPs (e.g., SSP7) provide location information for all
of their requests.

Table 2 reports the amount of homophily (i.e., like attracting like)
in our IP×IP movement graphs. We define homophily as the num-
ber of movements whose (IP) endpoints are from the same SSP
divided by the total number of all movements. Homophily is high
(greater than 90%) in both datasets. The Feb-2013 data has less
homophily (by ≈ 5.7%) than the Oct-2012 data. Homophily be-
tween mobile IPs is very high (over 98%). Homophily between
non-mobile IPs is lower than that of mobile IPs (namely, 86.9% for
Oct-2012 and 78.1% for Feb-2013).

Given the high levels of homophily in the IP×IP movements
graphs, can we predict location for IPs whose requests are from
SSPs without location information? The answer to this question is
yes. We observe sufficient non-homophily in the graphs that if an
SSP does not have location information for its requests, we can still
predict location for its IPs (because its IPs are likely to be linked to
other IPs from SSPs with location information). Figure 5 depicts
this non-homophily for SSP1 and SSP3, which do not provide any
location information for their requests. More than 50% of IPs from
these SSPs have movements to IPs from other SSPs (which provide
location information).

4.2 Experimental Setup
We show results for wvRN(minIAT) and wvRN(numMoves)

(both described in Section 3.2). Recall that we measure accuracy
by checking the predicted CBG ID vs. the actual CBG ID of an IP.

We divide our experiments into nine combinations of: infer lo-

cation for X using Y . Values for X are ‘all IPs’, ‘mobile IPs’, and
‘non-mobile IPs.’ Values for Y are ‘all neighbors’, ‘mobile neigh-
bors’, and ‘non-mobile neighbors.’ As discussed before, these IPs
are all public IP addresses that have been hashed.

Figure 6 shows the degree distribution for these nine combina-
tions with all neighbors and with only known neighbors (i.e. neigh-
bors with location information) for the Oct-2012 data. The plots for
the Feb-2013 data are similar and were omitted for brevity. We ob-
serve that except for degree distribution over mobile IPs, the rest
follow power-law distributions with heavy tails. The mobile de-
gree distributions are different because we represent them as time-
stamped nodes (as described in Section 3.1).

0% 

10% 

20% 

30% 

40% 

50% 

60% 

70% 

80% 

90% 

100% 

SSP1 SSP2 SSP3 SSP4 SSP5 SSP6 SSP7 

%
 R

eq
u

es
ts

 p
er

 S
S

P
 

Supply Side Providers 

% Requests with Location % Requests without Location 

(a) Oct-2012

0% 

10% 

20% 

30% 

40% 

50% 

60% 

70% 

80% 

90% 

100% 

SSP1 SSP2 SSP3 SSP4 SSP5 SSP6 SSP7 

%
 R

eq
u

es
ts

 p
er

 S
S

P
 

Supply Side Providers 

% Requests with Location % Requests without Location 

(b) Feb-2013

Figure 4: Percentage of requests with and without location in-

formation per SSP. None of the requests from SSP1 and SSP3

have location information. However, all the requests from SSP7

have location information.
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Figure 6: Oct-2012 degree distributions for the various combinations of inferring location for X given Y . Values for X are ‘all IPs,’

‘mobile IPs,’ and ‘non-mobile IPs.’ Values for Y are ‘all neighbors,’ ‘mobile neighbors,’ and ‘non-mobile neighbors.’ Given how

we represent mobile IPs as time-stamped nodes, we expect a different distribution in (c) and (f) than in other plots. The degree-

distributions plots for the Feb-2013 data are similar to these plots and are omitted for brevity.

Also, the distributions for all neighbors and known neighbors
are very similar. We do not observe sparsity around the neighbors
an IP. For example, in the Oct-2012 data approximately 70% of
an IP’s neighbors are known. Therefore, we do not attempt more
computationally expensive relational-learning methods like collec-
tive classification [7].

4.3 Results
We ran our experiments on a Macbook Pro with CPU 2.66 GHz

Intel Core i7, RAM 8 GB DDR3, hard drive 500 GB SSD, and OS
X 10.8. Our algorithm is implemented in Python. We use Net-
workX9 and MongoDB10 for network management and for finding
k-nearest neighbors. It takes us on average 1.2 milliseconds to pro-
cess each bid request.

Our results are organized as follows: (1) sensitivity to radius r,
(2) sensitivity to inter-arrival times, (3) core results, (4), inference
over IPs with one known neighbor, (5) inference over IPs with two
or more known neighbors, and (6) accuracy with a slack distance.

4.3.1 Sensitivity to Radius r

Previously, we illustrated our procedure for deciding whether an
IP address is mobile or non-mobile (see Figure 2). We had a radius
parameter r, which checked if an IP appeared outside the radius r
in 24 hours. What percentage of the IPs do we reverse from the
3rd party decision (i.e., reclassify a non-mobile IP to a mobile IP
because it appeared outside the radius r in 24 hours)? Figure 7 an-
swers this question. At the default radius of 0.1km, we respectively

9http://networkx.github.io
10http://docs.mongodb.org

reverse 10.5% and 12% of the decisions made by the 3rd party for
Oct-2012 and Feb-2013.

How sensitive are our accuracy results to change in the radius pa-
rameter? Figure 8 answers this question. We observe that different
radii do not significantly change the accuracy of wvRN(numMoves).11

From a radius of zero to a radius of infiniti, the change in accuracy
is less than 10%. In Figure 8, we only plot results for inferring lo-
cation on (1) all IPs, (2) only mobile IPs, and (3) only non-mobile
IPs. In these three cases, we use all neighbors in the inference.
The other combinations of this experiment (e.g., infer location of
non-mobile IPs using non-mobile neighbors, infer location of non-
mobile IPs using mobile neighbors, etc) show the same pattern, so
we have omitted them for brevity. For the rest of the experiments,
we use a radius r of 0.1km (or 100m). In Section 3.1, we gave a
technical reason for using r = 0.1km as the default value.

4.3.2 Sensitivity to Inter-arrival Times (IAT)

Figure 9 shows accuracy and number of predictions as we vary
IAT. We use wvRN(numMoves) for inference. The plots show
the results on inferring location for all IPs using all neighbors and
for non-mobile IPs using all neighbors. The values for mobile IPs
are similar to all IPs and are omitted from the plot. The results
for the other combinations of infer on X using Y neighbors are
also similar and are omitted for brevity. We observe that as IAT is
restricted to smaller values, the number of predictions has a bigger
drop (relatively speaking) than the gain in accuracy. These results
inspired us to use IATs as weights in wvRN; and so we developed

11In this version of wvRN(numMoves), we did not limit IATs for
IPs with one known location.
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Figure 7: Percentage of IPs whose classification we reverse

from the 3rd party decision (see Figure 2 for the decision pro-

cedure). A radius of infinity means no constraint was assigned.

At our default radius of 0.1km, we reverse 10.5% of the classi-

fications for the Oct-2012 data, and 12% for the Feb-2013 data.
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(b) Feb-2013: Accuracy vs. Radius

Figure 8: Sensitivity of wvRN(numMoves) to various radii in

the decision procedure for mobile vs. non-mobile classification

(see Figure 2). A radius of infinity means no constraint was

assigned. The trends in the two datasets are the same. In Oct-

2012, the maximum difference is an 8% decrease in accuracy

between a radius of 0 and a radius of infinity, which appears

when we are inferring location for non-mobile IPs using all

neighbors (the red plot). The same holds true for Feb-2013,

but the maximum difference is about 10%.

the wvRN(minIAT) method.

0% 

10% 

20% 

30% 

40% 

50% 

60% 

70% 

80% 

90% 

100% 

60 180 360 720 1440 

A
cc

u
ra

cy
 

Inter-arrival Time (in minutes) 

Oct-2012 infer loc for all using all nbrs 

Feb-2013 infer loc for all using all nbrs 

Oct-2012 infer loc for non-mobile using all nbrs 

Feb-2013 infer loc for non-mobile using all nbrs 

(a) IAT vs. Accuracy

1.E+00 

1.E+01 

1.E+02 

1.E+03 

1.E+04 

1.E+05 

1.E+06 

1.E+07 

60 180 360 720 1440 
N

u
m

b
er

 o
f 

P
re

d
ic

ti
o
n
s 

(i
n
 l

o
g
-s

ca
le

) 

Inter-arrival Time (in minutes) 

Oct-2012 Infer loc for all using all nbrs 

Feb-2013 Infer loc for all using all nbrs 

Oct-2012 infer loc for non-mobile using all nbrs 

Feb-2013 infer loc for non-mobile using all nbrs 
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Figure 9: Accuracy and number of predictions across different

IATs. wvRN(numMoves) was used for these experiments. As

IAT is restricted to smaller values, the number of predictions

has a sharper drop (relatively speaking) than the gain in accu-

racy. The results on Oct-2012 and Feb-2013 datasets are sim-

ilar. The Feb-2013 has less predictions because it is a smaller

dataset. Radius r = 100m.

4.3.3 Core Results

Table 3 reports our core results in terms of (1) accuracy of
wvRN(minIAT) vs. wvRN(numMoves), (2) number of predic-
tions made (i.e. size of the inference set), and (3) percentage of mo-
bile IPs in predictions. We show results for what type of IP we are
inferring location (namely, all IPs vs. mobile IPs vs. non-mobile
IPs) and what type of information we are using (i.e., all neighbors
vs. mobile neighbors vs. non-mobile neighbors). Our observations
are as follows:

• Even though the accuracy of wvRN(minIAT) is higher than
that of wvRN(numMoves), this difference is not statisti-
cally significant at the 0.05 level.

• Both methods have high accuracy (73% to 79%) on inferring
location for mobile IPs and all IPs when using mobile neigh-
bors. In the latter case (when inferring for all IPs), between
87.4% to 93.2% of the predictions are on mobile IPs. The
range depends on the particular dataset.

• The best accuracy for non-mobile IPs is 55.4% in Oct-2012
and 62.7% in Feb-2013. This is when we use non-mobile
neighbors.

• It is more difficult to infer the location of a non-mobile IP
than a mobile IP. This is because mobile IPs tend to have



smaller inter-arrival times and smaller distances than non-
mobile IPs. In the Oct-2012 data, 77.1% of the mobile to
mobile movements were less than 1km; while only 44.2%
of the non-mobile to non-mobile movements were less than
1km. These numbers are similar for the Feb-2013 data.

• The number of non-mobile IPs in the datasets are small com-
pared to mobile IPs. See Table 3. This is an artifact of how
we represent the mobile IPs (as unique time-stamped nodes).
See Section 3.

4.3.4 Inference over IPs with One Known Neighbor

Like many real-world networks, our data is highly skewed w.r.t.
its degree distribution, with many IPs having only one known neigh-
bor (see Figure 6). Tables 4 and 5 show wvRN(numMoves) re-
sults of inference on IPs with only one known neighbor. The for-
mer table showcases inference on the neighbors whose IAT is less
than or equal to 60 minutes; and the latter table showcases infer-
ence on the neighbors whose IAT is greater than 60 minutes. The
first observation here is that for IPs with only one known neigh-
bor, restricting IAT to be less than 60 mins improves accuracy by
an average of 12% for Oct-2012 and 23% for Feb-2013. The sec-
ond observation is that the restriction on IAT reduces the number
of predictions by an average of 4 times for Oct-2012 and 5 times
for Feb-2012.

4.3.5 Inference over IPs with Two or More Known
Neighbors

wvRN(minIAT) and wvRN(numMoves) have different results
only when we take into account IPs with two or more known neigh-
bors. To tease out this difference, we ran experiments where IP
nodes with one known neighbor were not considered. Table 6 lists
results for IPs with two or more known neighbors. We observe
that the accuracy numbers for wvRN(minIAT) are higher than
wvRN(numMoves). However, these differences are not statisti-
cally significant at the 0.05 level.

4.3.6 Accuracy with a Slack Distance

So far, we have considered a correct prediction as one in which
the predicted CBG ID is equal to the actual CBG ID. What if we
allow some slack in this definition? Suppose we consider a correct
prediction as: the distance between the centroids of the predicted

and the actual CBG IDs are within slack kilometers. Figure 10
shows these results for wvRN(minIAT) and different values of
slack distance. We observe that in the Oct-2012 data at only 25
kilometers slack (i.e., 15.5 miles), our accuracy is 84%, 86%, and
64%, respectively, for inferring the location of all IPs, non-mobile
IPs, and mobile IPs using all neighbors. These accuracy numbers
are up from 74%, 77%, and 49%, respectively, when we allowed
no slack distance. In the Feb-2013 data at only 25 kilometers slack,
our accuracy is 81%, 84%, and 64%, respectively, for inferring the
location of all IPs, non-mobile IPs, and mobile IPs using all neigh-
bors. These accuracy numbers are up from 74%, 78%, and 53%,
respectively, when we allowed no slack distance. The other combi-
nation of runs have similar results and are omitted for brevity.

4.4 Discussion
Figure 11 presents the public IP addresses in our datasets drawn

on a US map. The blue dots are the IPs for which our method
inferred the correct CBG ID. The red dots are the IPs for which
our method inferred the incorrect CBG ID. Our method tends to
perform better in city centers.

Our results showed the following. (1) wvRN(minIAT) has
slightly better accuracy than wvRN(numMoves), but this differ-

ence is not statistically significant at the 0.05 level. (2) Accuracy is
not sensitive to the choice of radius r used in determining whether
an IP is mobile or non-mobile. Also, based on current router tech-
nology, r = 0.1km is a reasonable default value. (3) Restricting
movement edges to those with smaller IATs increases accuracy but
at a sharp reduction in the number of predictions. (4) When infer-
ring location on all IPs and on mobile IPs, time-stamped mobile
neighbors provide the best information in terms of location. We
observe accuracy between 74% and 77% in Oct-2012 and between
75% and 79% in Feb-2013, respectively. (5) Inferring location for
a non-mobile IP is a hard task because non-mobile IPs tend to have
larger inter-arrival times and larger distances than mobile IPs. For
example, in the Oct-2012 data 77.1% of the mobile to mobile move-
ments were less than 1km; while only 44.2% of the non-mobile to
non-mobile movements were less than 1km. Also, the number of
non-mobile IPs is comparatively much smaller than the number of
mobile IPs in the data (see Table 3). (6) Allowing some slack dis-
tance (say of only 25km) increases accuracy on average by 11% in
Oct-2012 and by 9% in Feb-2013.
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0 

10 

20 

30 

40 

50 

60 

70 

80 

90 

100 

0 20 40 60 80 100 

A
cc

u
ra

cy
 

Slack (in km) 

Infer location for all IPs using all neighbors 

Infer location for non-mobile IPs using all neighbors 

Infer location for mobile IPs using all neighbors 

(b) Feb-2013: Accuracy vs. Slack (in km)

Figure 10: Allowing slack distance in computing accuracy,

where a prediction is considered correct if the distance be-

tween the centroids of the predicted and the actual CBG IDs

are within slack kilometers. At only 25km slack, accuracy in-

creases by an average of 11% in the Oct-2012 data and 9% in

the Feb-2013 data. wvRN(minIAT) was used here with radius

r = 100m.



Accuracy Accuracy Number of % Mobile
Infer location for all IPs... wvRN(minIAT) wvRN(numMoves) Predictions in Predictions

Oct-2012 | Feb-2013 Oct-2012 | Feb-2013 Oct-2012 | Feb-2013 Oct-2012 | Feb-2013

using all neighbors 71.6 | 70.8 69.7 | 69.3 1,189,679 | 328,015 91.0% | 83.8%

using mobile neighbors 74.4 | 74.8 72.6 | 73.5 1,077,644 | 278,674 93.2% | 87.4%

using non-mobile neighbors 51.9 | 57.7 51.7 | 57.3 98,338 | 40,777 68.7% | 62.1%

Infer location for mobile IPs...

using all neighbors 74.2 | 75.0 72.3 | 73.6 1,082,566 | 274,900 100% | 100%

using mobile neighbors 76.6 | 79.1 74.7 | 77.9 1,004,601 | 243,630 100% | 100%

using non-mobile neighbors 50.4 | 54.7 50.2 | 54.5 67,553 | 25,323 100% | 100%

Infer location for non-mobile IPs...

using all neighbors 45.5 | 49.0 44.0 | 46.8 107,113 | 53,115 0% | 0%

using mobile neighbors 44.0 | 45.1 42.5 | 43.0 73,043 | 35,044 0% | 0%

using non-mobile neighbors 55.4 | 62.7 55.0 | 62.0 30,785 | 15,454 0% | 0%

Table 3: Core results: wvRN(minIAT) vs. wvRN(numMoves). For each method, the highest accuracy values are in boldface. The

differences between the two methods are not statistically significant at the 0.05 level. The number of predictions varies depending

on the particular inference and the types of neighbors used in the inference process. See Section 4.4 for an explanation of the lower

accuracy values when inferring non-mobile IPs or using them in inference. Radius r = 100m.

Accuracy Number of % Mobile
Infer location for all IPs with 1 known neighbor with IAT ≤ 60min... wvRN(numMoves) Predictions in Predictions

Oct-2012 | Feb-2013 Oct-2012 | Feb-2013 Oct-2012 | Feb-2013

using all neighbors 72.7 | 76.0 606,274 | 179,294 92.4% | 87.1%

using mobile neighbors 75.4 | 79.0 546,498 | 154,610 94.3% | 90.4%

using non-mobile neighbors 52.6 | 59.2 86,981 | 35,073 74.1% | 68.3%

Infer location for mobile IPs with 1 known neighbor with IAT ≤ 60min...

using all neighbors 74.7 | 78.7 559,976 | 156,226 100% | 100%

using mobile neighbors 77.1 | 81.9 515,575 | 139,714 100% | 100%

using non-mobile neighbors 51.3 | 55.9 64,495 | 23,939 100% | 100%

Infer location for non-mobile IPs with 1 known neighbor with IAT ≤ 60min...

using all neighbors 49.1 | 57.5 46,298 | 23,068 0% | 0%

using mobile neighbors 46.9 | 51.5 30,923 | 14,896 0% | 0%

using non-mobile neighbors 56.3 | 66.5 22,486 | 11,134 0% | 0%

Table 4: Inference over IPs with one known neighbor and IAT≤ 60 minutes. The highest accuracy values are in boldface. Restricting

IAT to ≤ 60 minutes improves accuracy, respectively, by an average of 12% on Oct-2012 and 23% on Feb-2013; but reduces the

number of predictions by an average of 4 times for Oct-2012 and 5 times for Feb-2012. Radius r = 100m.

Accuracy Number of % Mobile
Infer location for all IPs with 1 known neighbor with IAT > 60min... wvRN(numMoves) Predictions in Predictions

Oct-2012 | Feb-2013 Oct-2012 | Feb-2013 Oct-2012 | Feb-2013

using all neighbors 56.3 | 50.7 1,573,436 | 773,095 81.1% | 78.4%

using mobile neighbors 59.9 | 55.6 1,262,022 | 594,504 83.6% | 80.9%

using non-mobile neighbors 42.5 | 35.6 369,519 | 207,099 71.0% | 69.6%

Infer location for mobile IPs with 1 known neighbor with IAT > 60min...

using all neighbors 59.5 | 55.2 1,275,406 | 605,948 100% | 100%

using mobile neighbors 63.0 | 61.7 1,055,269 | 481,151 100% | 100%

using non-mobile neighbors 43.5 | 31.6 262,188 | 144,226 100% | 100%

Infer location for non-mobile IPs with 1 known neighbor with IAT > 60min...

using all neighbors 42.8 | 34.8 298,030 | 167,147 0% | 0%

using mobile neighbors 44.2 | 30.0 206,753 | 113,353 0% | 0%

using non-mobile neighbors 40.3 | 44.9 107,331 | 62,873 0% | 0%

Table 5: Inference over IPs with one known neighbor and IAT > 60 minutes. The highest accuracy values are in boldface. Allowing

IAT of > 60 minutes decreases accuracy. This is because IAT on the movement edge is correlated with distance. Generally speaking,

the higher the IAT, the larger the distance. Radius r = 100m.



Accuracy Accuracy Number of % Mobile
Infer location for all IPs with ≥ 2 known neighbors... wvRN(minIAT) wvRN(numMoves) Predictions in Predictions

Oct-2012 | Feb-2013 Oct-2012 | Feb-2013 Oct-2012 | Feb-2013 Oct-2012 | Feb-2013

using all neighbors 70.4 | 64.6 66.7 | 61.2 583,405 | 148,721 89.6% | 79.8%

using mobile neighbors 73.4 | 69.7 69.6 | 66.7 531,146 | 124,064 92.1% | 83.7%

using non-mobile neighbors 46.6 | 48.4 44.8 | 45.5 11,357 | 5,704 26.9% | 24.3%

Infer location for mobile IPs with ≥ 2 known neighbors...

using all neighbors 73.7 | 70.2 69.7 | 66.9 522,590 | 118,674 100% | 100%

using mobile neighbors 76.1 | 75.4 72.2 | 72.6 489,026 | 103,916 100% | 100%

using non-mobile neighbors 29.6 | 34.0 26.9 | 30.0 3,058 | 1,384 100% | 100%

Infer location for non-mobile IPs with ≥ 2 known neighbors...

using all neighbors 42.7 | 42.6 40.1 | 38.6 60,815 | 30,047 0% | 0%

using mobile neighbors 41.9 | 40.4 39.3 | 36.7 42,120 | 20,148 0% | 0%

using non-mobile neighbors 52.9 | 53.0 51.4 | 50.4 8,299 | 4,320 0% | 0%

Table 6: Inference over IPs with at least two known neighbors: wvRN(minIAT) vs. wvRN(numMoves). The highest accuracy values

are in boldface. The differences between the two methods are not statistically significant at the 0.05 level. The number of predictions

varies depending on the particular inference and the types of neighbors used in the inference process. Radius r = 100m.

(a) Oct-2012

(b) Feb-2013

Figure 11: Hashed IP addresses in our datasets drawn on a

US map. The blue dots depict the IPs which our method cor-

rectly classified (i.e., inferred the correct CBG ID). The red dots

depict the IPs which our method incorrectly classified. Our

method tends to be more accurate on IPs in urban centers.

5. CONCLUSIONS
To the best of our knowledge, this work is the first of its kind

that uses just the structure of a weighted heterogenous movement
graph to infer locations, in terms of CBG IDs, for hashed public IP
addresses. We described a novel way of representing hashed IPs in
RTB requests either as time-stamped mobile nodes or as non-time-
stamped non-mobile nodes. The edges are annotated with the num-
ber of movements and the inter-arrival distribution between two
IPs. An extensive empirical study on two recent datasets with mil-
lions of RTB requests showed that using a local relational classifier
(such as wvRN) to infer (possibly noisy) latitude and longitude val-
ues and a k-nearest neighbor classifier to infer CBG ID is effective
with > 74% accuracy for all IPs. These results are impressive since
we are estimating the correct CBG out of 212K possibilities.
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