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ABSTRACT

Most video advertising campaigns today are still evaluated
based on aggregate demographic audience metrics, rather
than measures of individual impact or even individual demo-
graphic reach. To fit in with advertisers’ evaluations, cam-
paigns must be optimized toward validation by third-party
measurement companies, which act as “oracles” in assess-
ing ground truth. However, information is only available
from such oracles in aggregate, leading to a setting with
incomplete ground truth. We explore methods for build-
ing probabilistic classification models using these aggregate
data. If they perform well, such models can be used to
create new “engineered” segments that perform better than
existing segments, in terms of lift and/or reach. We focus
on the setting where companies already have machinery in
place for high-performance predictive modeling from tradi-
tional, individual-level data. We show that model building,
evaluation, and selection can be reliably carried out even
with access only to aggregate ground truth data. We show
various concrete results, highlighting confounding aspects of
the problem, such as the tendency for pre-existing“in-target”
segments actually to comprise biased subpopulations, which
has implications both for campaign performance and model-
ing performance. The paper’s main results show that these
methods lead to engineered segments that can substantially
improve lift and/or reach—as verified by a leading third-
party oracle. For example, for lifts of 2-3X, segment reach
can be increased to 57 times that of comparable, pre-existing
segments.

Categories and Subject Descriptors

I.5.4 [Computing Methodologies]: Pattern Recognition-
Applications
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1. INTRODUCTION
As digital advertising has grown into a sizeable industry,

it has also become one of the most exciting playing fields for
predictive modeling and machine learning. Today we use
very sophisticated optimization to make bidding decisions
in 30ms that consider the consumer’s web browsing history,
search history, purchase patterns, social connections, and
the context of the site where the ad is shown [13, 14, 4].

Today’s technology allows us to provide truly personal-
ized advertising with individual-level metrics. In contrast,
parts of the industry have yet to transition from a view of
advertising born in an era where advertising meant print
media, billboards, and television. These marketers are ac-
customed to thinking about consumers not as individuals
acting in real time, but as broad target audiences, typically
characterized by demographics (gender, age, etc) and maybe
some wide interest group descriptions (“middle-aged, afflu-
ent soccer mom”). As a result, the demand for demographic-
based targeting is still high, particularly in video advertis-
ing, where the most common metric for video advertising is
still the “percent in audience.” At the outset of a campaign,
the marketer defines a target audience (e.g., “Female age
18-49”). The performance of such a campaign is measured
by a third-party service, which quantifies what percent of
the campaign was in the target audience (“in-target”). The
firm running the campaign is paid only for the impressions
which the third-party service deems in-target, and the firm
must assume the cost of all extra impressions. Measurement
companies like Experian, Quantcast, Nielsen and Comscore
provide this measurement service based on proprietary pro-
cesses for estimating the demographic composition of any
arbitrary set of users [15]. We will call these third-party
services “oracles.”

A common industry solution to assembling such in-target
audiences is to purchase demographic information at the
user level from a third-party provider (e.g., Bluekai). How-
ever, the oracles use proprietary methods for estimating de-
mographics that typically are based on proprietary datasets
(such as survey results, credit reporting information, or so-
cial network information). As a result, the demographic es-
timates from the different oracles vary. Estimates purchased
from one company typically do not perform well against an-



other company’s measurement [12]. This can lead to com-
peting targeting goals, depending on the desires and con-
straints of the advertiser. For this paper, we will consider
one of those goals: the advertiser wants to deliver ads to a
large group of individuals who will get high in-target ratings
from a designated oracle, without regard to the methodol-
ogy that that oracle uses. Specifically, in this case it does
not matter whether the person really is female and 30 years
old; for better or worse, it only matters if the oracle thinks
that the person is.

Another industry solution is to buy oracle reports on each
piece of ad inventory (that is, each website or group of web-
sites with available ad space) and place ads only on the
websites with high in-target audience rates. This approach
mirrors the longstanding approach used in print and tele-
vision advertising, and carries the same drawbacks: lack of
precision and limited volume. Targeting based on inventory
alone makes it is impossible to assemble an audience with a
higher in-target rate or a larger audience than your purest
or largest piece of available inventory. Exceeding these re-
strictions requires individual-level targeting. We will discuss
how such inventory-based selection also can lead to biased
audiences, rather than representative in-target audiences.

One might suggest a solution relying on the oracle itself
as a feedback mechanism. A bandit strategy could be de-
veloped where specific segments are chosen for oracle mea-
surements in such a way that incrementally increases the
segment accuracy on each iteration [5]. However, oracle
measurements are neither cheap nor quick, so this approach
would come at a notable price, with a time delay that would
not support rapid iteration.

In this paper we present a solution that translates the
oracle-based optimization problem into a predictive learn-
ing task. We utilize a number of oracle reports received
across many campaigns for small audiences and convert the
aggregate feedback into class labels to create training ex-
amples for predictive modeling. We evaluate the approach
first by taking advantage of data for which we know the in-
dividual demographics. Then we report actual advertising
performance when using the predictions to target several
specific demographic groups at scale, achieving much higher
in-target reach than is possible with the pre-existing seg-
ments.

2. PROBLEM AND SOME NOTATION
For demographic targeting, targeters generally do not have

access to individual ground truth for large numbers of online
consumers. A version of ground truth can be purchased from
third-party validation services such as the oracles described
above. However, rather than labeling individual users, these
oracles provide aggregate demographic statistics for groups
of users. On the technical side, all this is done through
server-to-server communications occurring at some “event”
where a targeting firm interacts with an internet browser.
An event could be showing an ad or visiting a website that
triggers a call to the firm’s server. At that point, the re-
quest may be forwarded to the oracle along with with a
segment ID. To further complicate matters, in our own data
at Dstillery we do not know the exact set of requests that
were forwarded, as they are sampled to limit communication
traffic between the servers. We may have decided to collect
the oracle data for browsers visiting a specific website, but
we do not know which browsers specifically were sent to the

Demo Segment 1 Segment 2
Female 2-11 0.0082 0.013
Female 12-17 0.013 0.019
... ... ...
Female 65+ 0.111 0.391
Male 2-11 0.023 0.004
Male 12-17 0.031 0.006
... ... ...
Male 65+ 0.38 0.109
Female Total 0.32 0.71
Male Total 0.68 0.29

Table 1: Example of an oracle report for two segments with
all possible age-gender buckets.
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Figure 1: Distribution of gender ratio and size of pre-existing
segments for which we have received aggregate audience in-
formation from the oracle.

oracle. Thus, we get aggregate data on a sample of people
who have visited the website today. We will use the term
”segment” to refer to any specified set of online consumers.

In addition, we have historical reports from entirely un-
related campaigns at our disposal. They cover a variety of
segments with different age and gender ratios. The goal is to
design a new analytic product that estimates demographic
likelihoods at the user level, allowing the creation of high
in-target-rate segments for a particular audience.

For example, Figure 1 shows the distribution of gender
ratio and size of fifty pre-existing segments for which we
have received oracle feedback. The two observations are: 1)
the majority of segments have gender ratios close to 50%
and 2) the few segments with high or low ratios tend to be
small. A naive inventory-based targeting approach would be
ineffective for several reasons:

1. A gender ratio close to 0.5 implies that the advertiser
must run almost twice as much as theoretically neces-
sary to make up for ads that were not in-target.

2. Exposing too much of the wrong audience to a message
can create a negative perception for the publisher as
well as the brand.

3. Segments with acceptable precision are for the most
part tiny, leading possibly to very high frequency of
exposure (the same person sees the same ad 50 times)
in order to deliver the desired number of ads in-target.

4. Somewhat less obviously, the very high and low seg-
ments are typically biased toward a non-representative
subpopulation. For example, the segment with the
highest female ratio is a group of users using stamps
for scrapbooking; hardly a representative sample of fe-



males in general. Furthermore, using only a few highly
biased segments for any targeting purpose is unlikely to
lead to satisfactory performance, for which we present
evidence later.

In summary, we would like to build a predictive model that
for a given audience description (e.g., “Female,” or “Female
age 18-49”) can predict the probability that a browser is
in-target, such that a set of browsers with high predictions
would form a segment that receives a high oracle score. The
target variable is a binary class label: “in-target”/“not in-
target.” Features are derived from user information, such
as website visitation history, location, browser type, etc. At
that point it would be a standard classification problem that
can be addressed with a number of popular algorithms.

A typical classification problem assumes examples in the
form of K-dimensional feature vectors, X = (x1, ..., xK).
For the purpose of training, a set of N pairs (X,C) of
such feature vectors and corresponding class labels C ∈
{C1, ...CM} are drawn from some data-generating distribu-
tion D. Without loss of generality let us focus on the binary
case for M=2 and C = {0, 1}. The goal of predictive model-
ing is to estimate a function for that conditional probability
p̂k = F (X) subject to some loss function L(p̂k, C) over all
training examples. To build predictive models one might as-
sume, for example, that the observed class label C is drawn
from a Bernoulli distribution with P (C = k|X) = pk.

In the present problem, we define a segment s as any ar-
bitrary collection of users X that we decide to send to the
oracle. The oracle can observe the data distribution D and
thus can provide information that can help to complete the
tuple (X,C). As a policy, the oracle only sends back, for
each s and class C = k, the segment-conditional probability
of class membership rs(Ck) = P (C = k|s). With this feed-
back, we define Ds as the oracle’s segment conditional data
distribution. From Ds we will create the tuples (X, rs(Ck)),
which form the basis of our classification problem.

In essence, we attach to each example the oracle prob-
ability of the segment it was sampled from as a form of
probabilistic label, as a proxy for the unknown true class
label. In the next section, we will consider a few alternative
approaches of converting these probabilities into class labels
for training. We will refer to the inaccessible true class la-
bels C ∈ {0, 1} as “true” ground truth, to the aggregate or
probabilistic labels with rs ∈ [0, 1] as “fuzzy” ground truth,
and to artificially assigned labels t ∈ {0, 1} as “crisp” labels.

3. LEARNING FROM ORACLES
To frame our setting as a generic classification problem,

we focus on three key components of the problem: 1) the
selection of segments s from which we sample to build the
training data, 2) the translation of aggregate labels to in-
dividual level labels, and 3) evaluation and model selection
using validation data with only aggregate labels.

The last point is potentially the most interesting and chal-
lenging: Given that we have no ground truth on the labels,
how can we possibly evaluate our work? One slow and ex-
pensive option is to create new segments and actually collect
oracle feedback. Instead, we focus on whether it is possible
to generalize some performance ranking within the limited
amount of information we have. To test this, we obtained
an external dataset of Facebook users with similar struc-
ture to our core dataset for which we have demographic

ground truth. We ran experiments on this data to validate
our methods and show more detailed results in Section 4.

3.1 Sampling Segments to Build Training Data
Our training data consists of feature vectors X for each

user, the segment that each user belongs to, and the per-
segment class statistics rs(Ck) returned by the oracle. Al-
though we know which users belong to which segments, we
do not know exactly which users were sent to the oracle.
Therefore, we assume that these users are a random sample
of the segment s and that in large samples rs(Ck) converges
to ES [P (C = k|X)], where the expectation is taken over X.
Building a suitable training set from this data raises the

following questions:
1. How many examples should we request from each seg-

ment? That is, given the lack of ground truth, does
the general wisdom of more training data improving
the model still hold?

2. Are some segments more informative than others? Are
some segments entirely irrelevant and potentially detri-
mental to model performance?

Some intuitive responses come to mind: segments with
very high or low ratios are probably more valuable. How-
ever, these can introduce biases that distort our ability to
generalize the demographic estimation. This is a subtle but
important issue. Most of our segments comprise users who
show interest in a particular item. These items are often as-
sociated with high gender or age ratios, which we observe in
the oracle feedback. Our objective is to generalize the char-
acteristics of different demographic classes unconditional of
the specific items that interest the person. Using a few high-
and low-ratio segments for training might unintentionally
pick up just the behavioral signals that reveal interest in
the item. These models would likely have high precision at
low scale, but we need models that generalize in order to
achieve good recall (i.e., reach). Thus, we can’t necessarily
limit ourselves to the seemingly most informative (i.e., very
high- and low-ratio) segments.

3.2 Creating Labels
At this point we have a training set where we have at-

tached the oracle feedback to each example as a probabilis-
tic fuzzy label that is constant for all examples from a given
segment. There are two options that would make direct use
of the fuzzy labels: (1) treat the problem as a regression task
with a continuous outcome and (2) deal with the proper sta-
tistical interpretation of the label in the loss function of the
algorithm (e.g., change the calculation of likelihood inside a
logistic regression to a probability label).

For reasons primarily of convenience and reuse of our
existing large-scale predictive modeling infrastructure, we
do not use either of these methods. Rather, we prefer to
cast the problem as a classification task with binary labels.
Specifically, we have a reliable infrastructure to estimate lo-
gistic models with L1 and L2 penalties on millions of fea-
tures and would prefer by far to utilize this infrastructure
for the new demographic targeting product. Once a train-
ing set with binary labels has been developed, it can then
seamlessly be used with any of our algorithms. We explore
the following options for building a training set with crisp
labels, given a set of examples with fuzzy labels.

1. Probabilistically labeling: Assign a crisp (binary) la-
bel to each instance as a Bernoulli draw with p equal



to the oracle probability rs(Ck). Additionally we can
duplicate each example d times before assigning labels.

2. Maximum a posteriori (MAP) labeling: Fuzzy class
labels can be viewed as the probability of membership
in each class given the feature vector. As such, a crisp
label is given by the maximum a posteriori result: rj =
1 and ri 6=j = 0 for j = argmaxkr

s(Ck).
Of the proposed methods above, the first seems intuitively

to best take advantage of the provided information, whereas
MAP neglects the information provided by the probabilistic
labels: a segment with oracle rating 0.51 would get the same
labels (all 1) as a segment with rating 0.99. Furthermore,
MAP produces a degenerate training set if segments have
rs(Ck) all above or all below 0.5. Both observations seems
to argue against MAP.

However, there is an interesting observation about the
difference in label accuracy between the two methods that
warrants at least some quantitative analysis of the MAP
method. Suppose we have S segments, each representing a
portion Bs of the training set, so that

∑S

s=1
Bs = 1, with

the fuzzy label for each segment given by r1, r2, ..., rS . For
probabilistic labeling with a large number of duplicates, the
label accuracy is given by:

Acc =
S∑

s=1

Bs(r
2

s + (1− rs)
2) (1)

If the labels are assigned by a MAP translation, we have:

Acc =

S∑

s=1

Bs ×max(rs, 1− rs) (2)

Thus, the accuracy of the MAP labels is greater than or
equal to the accuracy with probabilistically weighted label-
ing, with equality when rs = 0.5 for all s.

3.3 Evaluation without Truth?
Model selection and validation pose nontrivial problems in

the absence of true class labels. Fortunately, we are inter-
ested less in absolute performance of a model than in relative
performance between candidate models as we make design
decisions. We will return to this question later with the help
of a surrogate dataset where the true labels are known. For
now, consider the scenario of a training set with crisp labels
according to one of the above labeling mechanisms. For any
dataset with crisp labels and a corresponding estimator for
P (Ck|X), we define AUCcr as the AUC measured on crisp
labels and AUCtr as the AUC measured on the actual, but
usually unobserved true labels. We can always treat ours as
a “regular” classification problem, selecting a subset of the
data for validation and measure AUCcr on “holdout” data
with crisp rather than true labels. However, using AUCcr

leads to a few problems:
1. The selection bias problem still persists. Our holdout

set isn’t necessarily representative of the general pop-
ulation, so even good measures of AUCcr or AUCtr

might not generalize.
2. A high value for AUCcr with MAP labels really means

we can predict segment membership for segments with
at least a 50% class ratio. Doing so does not guarantee
a good AUCtr, leading us to be overconfident in our
ability to generalize on the demographic estimation.

3. A subtle but important issue is that with probabilistic
labeling we might severely underestimate the perfor-
mance due to the noise in the labels. For example,

a model with near perfect gender discrimination may
score only AUCcr = 0.6. While for this application we
only need care about the ranking, if the range of the
metric is severely restricted, there is a higher likelihood
of missordering due to estimation variance.

Consider a simple scenario where the test set is composed
of only two segments of equal size, one with a gender ratio
of r1(C) = 0.6 and one with a ratio of r2(C) = 0.4. Imag-
ine in a worst-case scenario that for some reason a perfect
predictor of segment membership is available. Under MAP
labels the best possible predictions will simply be 1 for all
examples in segment 1 and 0 for all examples in segment 2,
and this will produce an AUCcr = 1. In this toy example,
we can analytically derive that AUCtr = 0.55, and we see
that AUCcr is severely overestimated. Generally speaking,
the better we can predict P (S|X) the more likely we are to
run into this problem.

Given the true labels of this test set, any model with an
AUCtr > 0.5 produces a ranking with more true positives
than true negatives in the top 50%.1 In a probabilistic la-
beled version of this test set, 48% of the positive examples
are mislabeled as negative, and 48% of the negative examples
are mislabeled as positive. This has the effect of reducing
the number of positive crisp labels in the top 50% of the
predicted ranking, and reduces the AUCcr.

4. SIMULATING AN ORACLE
To evaluate whether the proposed method indeed can learn

well from aggregate ground truth, we generated an oracle
setting from data where the ground truth is in fact known.
We use a dataset of Facebook users and their characteris-
tics, obtained courtesy of the myPersonality Project.2 This
dataset contains about 220, 000 anonymized user IDs, each
with a gender label and binary indicators for the Facebook
items they have “Liked.” One notable point is that this
Facebook dataset has no connection to our advertising data;
we cannot transfer any of the ground truth to our domain.
We use it only to assess potential methods. The Facebook
dataset has a natural analogy to the data we use for tar-
geting browsers with ads. Past website visits correspond to
Likes and can be used as model features; segments can be
defined in various ways, such as the set of users who Liked
a particular item.

As mentioned above, sampling via a small set of predefined
segments—based for example on consumer interest in par-
ticular demographically oriented items—can have the effect
of creating selection biases within the training data. Many
of our methodological choices are designed specifically to
counteract the effects of these biases. We have designed our
experiments on the Facebook data to specifically create sim-
ilar selection biases. Our goal was to recreate conditions in
the lab that best mirror the conditions we observe in our
production setting.

We created“predefined segments”of Facebook users by as-
signing users to segments based on specific objects they have
Liked. These are similar in structure to the actual prede-
fined segments in our advertising context. We then created
a“simulated oracle” feedback mechanism by aggregating the
true labels (known for the Facebook data) for each segment
s, in order to estimate values for rs(Ck). We then selected

1Since the baserate is 50%.
2http://mypersonality.org/
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Figure 2: Comparison of the performance of pairs of models each
trained on the same set of records, labeled using either MAP or
probabilistic labeling, and evaluated on the same test set. All ini-
tial datasets were drawn from segments sampled based on Face-
book Likes, as described in the text. The dashed identity line
shows equivalent performance.

a collection of about 50 specific segments to build our train-
ing data. We selected this collection to mimic the sizes and
gender ratios we observe in our own data. Compare our
own segments in Figure 1 and the corresponding set of Like-
based Facebook segments in Figure 8. The difference here,
of course, is that we actually know the ground truth for the
individuals in the Facebook segments.

4.1 Labels, Segments, and Sampling
Different policies for labeling and training set creation

must be evaluated in tandem. Thus, first we explore the ef-
fect on model performance of the following design variants:
1) varying the ratio thresholds that drive segment sampling,
2) MAP vs. probabilistic labeling, and 3) varying the du-
plication of records in the probabilistic labeling. For our
evaluation metrics, we will use both AUC and the precision
of the predictions at varying percentages. Precision is the
more relevant metric for this application because the preci-
sion at a given percentage k is equivalent to the in-target
rate for the set of users in the top k% of the model predic-
tions.
MAP vs Probabilistic

For the first experiment, we compare MAP labeling and
probabilistic labeling. We do this under different segment
sampling schemes to show that the presence of selection bias
impacts the optimal labeling choice. In all cases, we report
metrics evaluated on true labels. Figure 2 shows the results
of the main experiment. Here each segment was defined as
the set of users associated with a particular Like. We cre-
ated multiple training sets using this sampling design and in
each training set we vary the segments sampled (and thus
the demographic ratios of segments included in the training
data). For evaluation we created a holdout set that is a ran-
dom sample of all users with true demographic labels. Each
point shows the precision at 5% of the holdout set for each
training set and the axes represent the labeling scheme.

A substantial majority of the points shown in this figure
fall below the identity line, indicating that probabilistic la-
beling is a better strategy. This is a somewhat surprising
result, since MAP labeling always leads to labels at least
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Figure 3: The performance of models trained on datasets labeled
with MAP or probabilistic labeling, when the datasets are drawn
from unbiased segments—sampled randomly from the population
with prescribed gender ratios. Note the difference from the prior
figure.

as accurate as those produced by probabilistic labeling. We
suspect that this is an artifact of the selection bias discussed
throughout this work. To confirm this, we ran the same
experiment under a different sampling schema, designed to
eliminate the bias in the Like-based segments. Instead of
defining segments as groups of users that Liked a particular
Facebook object, we constructed segments with prescribed
gender ratios, but which sampled uniformly from the male
and female populations. We then created multiple training
sets by drawing from these uniformly sampled segments and
did the same labeling test. Figure 3 shows the result of this
experiment. We that see for both AUCtr and precision at
5%, MAP is the better strategy when the datasets are drawn
from unbiased segments.

We deduce from the above results that if segment assign-
ments are independent of the user features in our data (i.e.,
P (s|X) = P (s)), it would be better to choose MAP label-
ing. However, when using the biased pre-existing segments,
where s is in fact dependent on X, probabilistic labeling is
better. In our production system we know for sure that s

is not independent of X, and often times this dependency
is quite strong. Thus it makes sense to choose probabilistic
labeling as the production strategy.
Sampling

The next question is: how should we sample segments? In
particular, should we sample segments based on the ratio
rs(Ck) measured by the oracle? To test this, we used 30 seg-
ments (defined by groups of people Liking an object), and
generated 15 different datasets from them. We wanted to
measure how performance metrics change after varying the
accuracy of the training data. We start by sampling train-
ing examples from two segments: the ones with the highest
and lowest ratios, and proceed by adding more segments
with ratios closer to 50%. All datasets were the same size
(20, 000) and drew evenly from each segment used. Observe
that these 15 datasets have decreasing accuracy as you go
down the list, using either method of label assignment. We
applied both labeling strategies and report the performance
against ground truth in Figure 4.

We see again that probabilistic labeling tends to perform
better despite the fact that the accuracy of the labels is
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Figure 5: AUC and precision of the top 5 and 10 percent,
as a function of the number of duplicates of each example
in the training set.

lower. In addition, both labeling strategies create a hump
shape, with the optimal performance halfway between uni-
form sampling from all segments (lowest accuracy) and only
sampling from the most extreme segment (highest accuracy).
Duplication

Given that probabilistic labeling seems to be better over-
all, we now consider whether it helps to include the same
example multiple times. Figure 5 shows the performance
of models trained on datasets labeled with probabilistic la-
beling with varying resampling parameter d. This initial
dataset was built from two segments selected by sampling
from the full dataset based on gender, to create one segment
with an aggregate label of 0.8 and one with a label of 0.2.
This was done in order to evaluate the dependence on d in
general, without the effects of selection bias. Improvements
in performance seem to diminish for d greater than about
10. Following these results, we use d = 10 for all probabilis-
tically weighted labeling in the remainder of this paper.

4.2 Evaluation Consistency
Recall that our goal for evaluation is a relative perfor-

mance measure that will allow us to reliably compare two
models. We previously identified two reasons why out-of-
sample evaluation with crisp labels could be a problem: 1)

Figure 6: AUC measured using an out-of-sample test set with
true labels drawn from the full population (vertical axis) against
AUCtr measured using an out-of-sample test set with true labels
drawn from the seed segments.
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Figure 7: Correlation between performance (AUC and precision
at 5%) measured on crisp labeled and true labeled holdout sets,
sampled from seed segments. Crisp labels used for this test set
were assigned by probabilistic labeling with d = 10.

Our holdout set is drawn only from the predefined (“seed”)
segments, so the results are not guaranteed to generalize to
the full population; 2) The translated crisp labels on the
holdout set differ from the true individual labels.

Accordingly, we posit that out-of-sample validation on
crisp labeled data drawn from the seed segments is only
advisable for this purpose if: 1) Evaluation out of sample
measured on a true labeled test set sampled from the full
population produces a ranking of candidate models which
is consistent with the ranking produced from a true labeled
test set drawn from seed segments, and 2) Evaluation mea-
sured on a true labeled test set drawn from the seed segments
ranks candidate models consistently with that measured on
a crisp labeled holdout set sampled from seed segments—
the data we have access to. We address these two factors in
turn.

Initially we examine the bias in the seed segment popula-
tion with respect to the population at large. In order to see
this relationship for models with a wide range of AUC, we
built training sets by drawing true labeled samples from the
seed segments and adding varying degrees of noise. Models



Figure 8: Results from a model to predict male users. Prede-
fined segments, based on Facebook Likes (blue) and engineered
segments, created from the model (red) are plotted against the
in-target rate and the segment volume, with respect to the full
population. Note the fine-grained choice available for the model-
generated segments, as well as the much larger size for any in-
target ratio.

trained on these datasets were then evaluated against hold-
out sets with true labels, drawn from either the full popula-
tion or from the seed segments. The resulting relationship
between AUCtr, measured on a test set drawn from the seed
segments, and AUC measured on a test set drawn from the
full population is shown in Figure 6. There is clear evidence
that the bias affects the model evaluation: the AUC mea-
sured on a test drawn from the seed segments is generally
higher than that measured on a test drawn from the full
population. However, the relationship is monotonic, which
suggests that the rankings measured on either set are con-
sistent with each other.

Figure 7 captures the relationship between performance
measured on a true labeled set and a crisp labeled set, both
sampled from the seed segments. While the precision at 5%
does not seem to rank consistently, AUCcr does show a rea-
sonable correlation with AUCtr. It remains open whether
there is indeed a significant mis-ranking or a variance prob-
lem due to limitations of our test set size.

In summary, although our evaluation method is biased,
we are cautiously optimistic that even in the absence of a
comparable dataset with true labels, it is possible to make
optimization choices on crisp labels alone. We have also ex-
perimented with evaluation directly on the aggregate labels,
but did not observe generally better performance.

4.3 Finally: Creating New Segments
The results reported so far are in service of our ultimate

question: (how) can we use this methodology to build a
model that predicts a demographic target population and
generates large segments with high in-target statistics. Here
we will compare the statistics of the original segments (with
similar characteristics as ours, based on Facebook Likes) to
segments we create from a model built on crisp labels. In the
latter case we put a user in a segment if P (C = k|X) > δ.

Figure 8 makes a compelling argument that supports our
methods. We chose 48 likes from the Facebook data that
result in seed segments with size and ratio statistics resem-
bling those of the actual pre-existing segments we will use in

our final online ad targeting application. (The distribution
of the actual pre-existing segments is shown in Figure 1;
the Facebook Like segments appear in blue in Figure 8.)
We pooled these Facebook seed segments and generated a
model to predict P (Male|X). This model was then used to
estimate the in-target likelihood of individual users. From
these predicted likelihoods we created“engineered”segments
by varying the cutoff δ. We can see in Figure 8 the accu-
racy vs. scale tradeoffs that we achieve with our predictive
methodology. If high accuracy is a priority, we can create a
male segment with 90% in-target covering 3.6% of the pop-
ulation. This is fifteen times larger than the pre-existing
segment with 90% in-target. Similarly, if scale is the prior-
ity, we can reach 22.5% of the population and still achieve
an in-target rate of 80%.

4.4 Summary of Findings
In summary, there is strong evidence that we can achieve

our goal of generating demographic predictions that greatly
exceed our pre-existing segment information in both purity
and scale. More specifically, we learned:

1. When segment membership is not random on the fea-
tures X, we expect a training set with crisp labels as-
signed by probabilistic labeling to produce more reli-
able results than one using MAP labeling.

2. Duplicating each example further improves the prob-
abilistic labeling, and d = 10 duplicates is sufficiently
high to capture most of this improvement.

3. When selecting segments to include in a training set,
segments with high or low ratios lead to improved over-
all label accuracy. However, it is important to also in-
clude a sufficient amount of data from segments with
ratios nearer 50% to mitigate the impact of selection
bias inherent to high- and low-ratio segments. The def-
inition of “sufficient” here will change with the specific
problem and dataset.

4. Comparative model evaluation can be carried out based
on oracle data alone, which are translated to crisp la-
bels using probabilistic labeling. This evaluation gives
a reliable comparison between candidate models that
can be used to fine-tune segment selection.

5. HIGH-REACH ONLINE DEMOGRAPHIC

TARGETING
We applied the methodology presented above to our appli-

cation of interest: targeting demographic groups for display
advertising. Here we present results from models we built
and deployed in our production setting, targeting the demo-
graphic group“Female age 18-49”. We use past website visits
as features, and we define each pre-existing (seed) segment
as the set of browsers that has visited a particular website.
Third-party demographic reporting gives us the“oracle” rat-
ings which serve as the aggregate class labels for these seed
segments. In our production problem, we never have access
to the full ground truth. Model selection must be done using
historical oracle ratings as truth, and after choosing a final
model we may purchase oracle ratings for the segments we
build.

Development of the “Female age 18-49” model represents
an additional variant of this problem. For this particular tar-
get group, only three of the 50 seed segments at our disposal
had an in-target rate of greater than 50%. Having a target



group that is in the minority in all or most seed segments
changes the problem in two key ways. First, translation
to crisp labels must be done using probabilistic labeling, as
MAP labeling would produce a dataset labeled entirely neg-
ative. Second, segment selection includes a new trade-off.
When all segments have minority labels, the only segments
with ratios far from 50% are those with very low ratios in
the positive class, and result in very few positive labels. In
“simulated oracle” experiments (omitted here for brevity),
we found that a balance between overall label accuracy and
high label sensitivity (that is, the ratio of correctly labeled
positives to all positives) in the training set resulted in bet-
ter models. Thus, we select more segments with a wider
range of ratios.

All models were built using logistic regression with L2 reg-
ularization and trained with stochastic gradient descent. For
more details on our modeling methodology, see [14, 4]. For
all models, final decisions on segment selection and regular-
ization strength were made by evaluating on a hold-out set
with crisp labels created by probabilistic labeling. In this
model selection process, we face an unavoidable selection
bias problem because our test set does not sample evenly
from the entire population we work with in production. Ac-
cordingly, we use a test set built from all available segments
to minimize selection bias. This has the additional effect
of producing a test set with relatively low label accuracy,
which reduces discrimination between models, but we found
we were left with enough discrimination to make decisions.

The final models we selected were deployed in our produc-
tion environment, and we purchased reports on these from
the third-party “oracle”, which serves as our ultimate vali-
dation. The results for the target demographic “Female age
18-49” are shown in Table 2 and Figure 9. We report the
in-target rate of three engineered segments, as well as the
lift in the in-target rate of our predictions with respect to
the baseline rate of the United States population, which is
0.22 for this demographic [3]. Though we do not claim that
randomly targeting the U.S. population is the most relevant
alternative to our approach, lift over a random baseline is
a standard for comparison within the industry, and for the
demographic categories shown here, marketers aim for lifts
of at least 1.5 to 2. In Table 2 we also report the relative size
of the engineered segments, with respect to the largest set
of seed segments that could be combined to give a precision
at least as high as that of the engineered segment.

Our predictions provide dramatic increases in both lift
and volume. Focusing on Segment 2, which balances gains
in lift and volume, we show a lift of 2.54 with a volume
that is increased by a factor of 57 compared to the largest
combination of seed segments with the same precision. For
campaigns that target on demographics, we are typically
only paid for impressions shown in-target. Without any pre-
dictive modeling, we would need to show an average of 4.5
impressions in order to show one impression in-target. Using
our model, this number drops to 1.7 for our most selective
segment, a 63% reduction in the number of impressions, and
hence the cost of the campaign.

6. RELATED WORK
There have been a number of efforts using this set of Face-

book data for modeling personal preferences based on online
activity such as likes ([1, 9, 7, 8]). Most of them confirm that
there is a strong relationship between the things people do

Segment In-Target Lift Volume Rel. Volume
1 0.60 2.73 0.0029 35.2
2 0.56 2.54 0.0072 57.0
3 0.49 2.23 0.017 7.09

Table 2: Results from our demographic prediction models
in a production setting, verified by a third-party “oracle”.

Figure 9: Results from engineered segments verified by a third-
party “oracle”.

online and core characteristics like gender and age. This is
consistent with our ability to use browsing histories to build
demographic segments.

From a technical perspective, learning in scenarios where
labels are not available has been considered as an unsuper-
vised learning problem [2]. However, our learning problem
is not unsupervised since we do have a form of ground truth
information. A classification problem where probabilistic
estimates serve as ground truth labels is considered in [17,
16]. In this problem, images of the surface of Venus are as-
signed a rating by domain experts, indicating the degree of
evidence of the presence of a volcano in the image. These
papers include a thorough discussion of the problem of as-
signing labels, though it differs from our problem in that the
authors are not constrained to a modeling algorithm that
takes in standard class labels. The notion of learning from
an oracle was explored for example by [11]. As in our prob-
lem, this problem makes use of a type of approximate label,
in this case a prediction from an existing and very complex
model. The goal was to generate a lower complexity model.
The works in both of these scenarios differ from our prob-
lem in that individual labels are available, where in our case
we only have labels in aggregate, and seek to build a higher
complexity model. In that respect, work on modeling team
sports is closer to our setting. [10] and [6] infer individual
skill level of players based on the wins and losses of the team
in aggregate.

7. CONCLUSIONS
In response to a demand from video advertisers, we have

created targeted, “engineered” demographic segments as a
new product. We designed a process that takes advantage of
aggregated labels that are available for purchase from third
parties. By framing demographic prediction as a form of
probability estimation in very high dimensions, we demon-
strate that it is possible to create demographic segments
that have sufficient scale to satisfy even large campaigns and



show economically relevant performance improvements over
industry standards. For smaller populations utilizing the
engineered segments can reduce costs by two-thirds, and im-
prove the customer experience by limiting the frequency of
repeated ad views. The engineered segments also do not suf-
fer from the severe bias incorporated by (some) traditional
segmentations of online audiences.

In the process of developing this product, we derive in-
teresting methodological insights that we expect to general-
ize to other applications involving learning from aggregated
samples. In particular we consider sampling, labeling, and
evaluation on noisy labels. In real problems, segments are
biased, and not random cross-sections of the population. As
a result, utilizing even segments with very little skew in ad-
dition to more informatively skewed segments is beneficial.

Evaluation when ground truth is unavailable adds to the
challenge. We observe that the noisy labels provide suffi-
cient ranking consistency to guide the modeling process. In
particular, we can use classical holdout methodology. In ab-
solute terms, models tend to look much worse under such
evaluation than they actually are. In fact, we’ve seen that a
model which seems nearly random with AUC = 0.54 under
evaluation with noisy labels can have AUC = 0.80 on the
true class labels.
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