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Abstract—Today, predictive digital ad targeting typically relies
on detailed user profiles. As consumers deserve and expect
more internet privacy, we aim to develop methods to effectively
target advertising in a way that respects consumers’ wishes. In
particular, we have developed ID-Free targeting, a method to
target advertising based on predicted user behavior, without
reference to any profile, web browsing history, or any other
identifier of the user being targeted. With the restriction that
historical user behavior is not available, the only accessible view
of the user is the information about the digital ad opportunity
itself, such as the URL and the time of day. In this work, we
focus on the problem of making brand-specific targeting decisions
based on the URL where the ad will be shown, that is, predicting
which ad inventories are most likely to lead to a conversion
for a particular brand. In order to address this problem, we
learn rich URL embedding features for ad inventory URLs. We
share the design of our online learning algorithm, which is a
practical implementation for training the URL embeddings with
the large, dynamic “corpus” that is the internet. We show that
this approach to feature representation gives clear performance
improvements over a naive representation, and improvements
are even more pronounced when brand-specific training data
are scarce. The resulting model enables a fully ID-Free delivery
of precise ad targeting to users with completely unknown identity
and historical behavior.

Index Terms—digital advertising, neural networks, embedding,
privacy

I. INTRODUCTION

As consumers increasingly demand a more private internet

browsing experience, the digital advertising industry has been

challenged with finding an approach to delivering relevant ad-

vertising to users who have no associated profile or identifiers.

Most predictive ad targeting today relies on the use of third-

party browser cookies, which allow targeting companies to

associate the web browser with a persistent, cross-site browser

ID. This anonymous ID can be used for both data collection

and ad targeting. That is, a user’s website visits across websites

can be collected and stored in a profile associated with their

browser ID, which can then be used to execute targeted ad

delivery via real-time bidding (RTB) advertising. Predictive

advertising built on detailed browsing history enables highly

accurate ad targeting, but can also inadvertently produce a

negative user experience. Users may feel they are being

followed around the internet or can be targeted out of context,

for example receiving ads for personal products while at work.

As a result, there is a movement in the industry away from

the support of third-party cookies. Over 40% of U.S. internet

users today use browsers that do not have third-party cookies

enabled [1]. In early 2020, Chrome announced its intention

to phase out support for third-party cookies in two years [2],

which would effectively end the use of this technology in the

digital advertising ecosystem.

At Dstillery, we have developed an approach for privacy-

friendly ID-Free targeting to effectively target digital advertis-

ing to users with no identifiers of any kind and no history or

other stored information available [3]. We focus on a form

of ad targeting called prospecting, which aims to identify

and reach users likely to become new customers of a brand.

A prospecting campaign aims to drive devices to take an

action that a campaign is trying to drive; we call this event a

conversion. A conversion action is typically a product purchase

or visit to the brand’s homepage. Our approach to privacy-

friendly ID-Free targeting involves training prospecting mod-

els based solely on information seen in a bid request. In this

work, we focus on the most predictive signal, the inventory

URL. We learn rich embedding features for ad inventory

URLs, allowing us to train models that perform even when

training data are scarce. We learn URL embeddings from

website visitation behavior rather than from the text or other

website content. The resulting embeddings reflect the browsing

intent of the user, as websites viewed with similar intent are

similarly located in embedding space.

One challenge of learning URL embeddings for our use

case is that we are working with a large, dynamic set of web

browsing behavior. This means there are many parameters to

learn, and in order to capture a new website the whole model

must be retrained with a new dictionary, which is impractical

given the size of the task. To overcome this problem, we use

a modified feature hashing trick to minimize the effect of
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hash collisions while reducing the number of parameters in

the model. This avoids the need for a dictionary and lets us

continuously train the model with online learning, rather than

run large batch trainings.

We developed this approach to ID-Free targeting both

in response to the large number of internet users currently

unaddressable by third-party cookies and anticipating the

deprecation of third-party cookies in the future. The models

are “ID-Free” in the sense that they are used to target ad

delivery to users without any identifiers, in contrast to standard

approaches to predictive ad targeting. To build the models, we

require data from a sample of users with identifiers, and in this

paper, model building is performed on data gathered using

third-party cookies. We intend to explore and demonstrate

these techniques using the data sources available today, and

this methodology can be used currently to reach users without

IDs. Later, in the event that third-party cookies are no longer

available, these techniques will be applied to different data

sources that do not rely on third-party cookies. Section III

describes the data sources used in this work as well as the

sources we anticipate using in a scenario where third-party

cookies are no longer available.

The novel contributions of this work include:

• Dictionary-free URL embeddings that can be continu-

ously updated using online learning.

• The use of URL embeddings as features for ad targeting

models that score ad opportunities based on a single URL

and perform across a wide range of dataset sizes.

• Empirical insight into how a meaningful metric space

learned via URL embeddings facilitates learning by al-

lowing models to generalize what is learned from web-

sites in the training dataset to websites rarely or never

seen in training.

• A method to deliver predictive targeted digital advertising

to users with no ID that is effective even with small

training datasets.

II. RELATED WORK

On the problem of the targeting of advertising to users

without identifiers or stored behavior, two main approaches

are prominent: traditional contextual and inventory modeling.

Traditional contextual targeting is when advertising is tar-

geted based on the text of the website itself. Typically, the

advertiser chooses keywords associated with a campaign,

and advertising is delivered to webpages containing those

words [4]. This differs from our approach in that delivery

is optimized towards human-selected keywords, rather than

a campaign-specific outcome. Additionally, it is limited to ad

inventory with rich text from which keywords can be extracted.

However, we note that the information used in this approach

(words on the website) is fully complementary to that used by

ours (behavioral sequences of website visitation). As such, the

keyword data extracted in the traditional contextual approach

can be used as an enhancement to our URL embeddings

approach. This is an area of ongoing research outside the scope

of this work.

Inventory modeling targets ads based on the past perfor-

mance of each inventory URL [5]. This approach is similar

to our ID-Free approach, and in fact, the baseline approach

used in section IV is equivalent to inventory modeling. We

will show that a significant drawback of inventory modeling

is that it requires a substantial amount of data on a given

inventory (gathered at a cost) to make a good prediction on

that inventory. Our method overcomes this drawback by using

a richer feature representation that incorporates information

from a separate training dataset.

Dimensionality reduction is a well studied field of machine

learning, consisting of both linear [6], [7] and nonlinear

[8] methods. Reducing the dimension of the feature space

can improve predictive performance by lowering variance,

especially when data are limited. More recently, the field of

representation learning has developed [9], which aims to learn

features that improve the performance of machine learning

tasks. One very successful representation learning approach

uses neural networks to learn numerical embeddings, signifi-

cantly reducing the dimension of large sparse feature spaces.

Examples of this work can be found in the field of Natural

Language Processing (NLP) [10], [11], and these methods

have been applied in industry in domains such as ecommerce,

recommendations and retargeting [12]–[14]. Feature hashing

has been used to train embeddings for word representation

[15], though to our knowledge has not been used to train

embeddings for individual websites using online learning.

Several variants of embedding browsing histories or URLs

have been used to address problems adjacent to ours. Recurrent

Neural Networks have been used to embed or model complete

browsing histories [16], [17]. Our problem differs from this

one in that for us, entire sequences of web browsing events are

not available and one must make a targeting decision based

solely on the information available in a single bid request.

Work embedding single URLs includes [18], which uses the

characters and structure of the URL string itself to embed

URLs to facilitate phishing detection. In contrast, we seek

to understand the intent of real users visiting URLs, with

the goal of predicting interest in brands and products. As

such, examination of the URL string itself is not applicable

to our problem. The approach presented here uses browsing

behavior to embed URLs resulting in embeddings representing

the intent of the website user.

III. METHOD

Our goal is to predict, using only data available in a bid

request, whether an ad opportunity is likely to lead to a

conversion for a brand’s digital advertising campaign. The

main feature of interest available in a bid request is the ad

inventory URL, i.e. the website on which the ad will be

displayed. This feature is predictive because it often signals

intent. For example, a user on shoe websites may be shopping

for shoes, and a user reading about sports may be interested

in tickets or ways to live stream games. To use the inventory

URL as a model feature, we first need to encode it numerically.

A naive way to do this is to represent URLs as binary
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categorical variables using one-hot encoding. This results in

an extremely large, sparse feature space with dimensionality

equal to the number of unique URLs. Because this space

lacks a distance metric to capture the relationship between

websites, models trained with it have no ability to generalize

what is learned on one website to other websites. Instead, we

learn a lower-dimensional embedding space in which close

distance corresponds to URLs with similar content. The space,

therefore, inherits a meaningful metric and gives the URLs a

rich numerical representation.

Building ID-Free models is then composed of two steps.

First, we learn an embedding space, and next, we use it to

train the models. The first step is performed in an unsupervised

manner over a large dataset. We learn the embeddings online

so that they evolve over time to reflect the changing behavior

of people browsing the internet. This enables us to add new

websites as soon as we see them without retraining the entire

embedding space.

The second step, which is to train the ID-Free models using

the embeddings as features, is then achievable with simple

models on small datasets. Reusing the same embeddings for

different ID-Free models allows for an efficient model building

pipeline, a business requirement of ours given our need to build

and update thousands of models daily.

To learn URL embeddings, we need data that capture

sequences of website visits by individual users. In this work,

these data have been gathered by observing website visits tied

to browser IDs in RTB bid requests. In the future, this data can

be gathered from a different, cookie-free source. For example,

website visits could be collected from a sample of users who

have opted in to participate in a panel study and are fully

compensated for their data. It is worth noting that this data

need not be tied to any personal identifiers and does not require

the collection and storage of complete user browsing histories.

At any one time we only need to save up to two website visits

by any user, and in the current implementation this data ages

out of our system within eight hours.

To train ID-Free models, we need a “conversion” dataset

that consists of website visits, each labeled by whether or

not the visit was followed by a conversion (for example, a

purchase on a brand’s website). In this work, we gather a

sample of conversion data by observing website visits in real-

time bidding (RTB) bid requests tied to third-party cookie

browser IDs and recording whether or not each browser ID is

subsequently linked to a product purchase (or other conversion

event) within a specified time window afterward. Standards

for measuring conversion without third-party cookies are still

being developed, and this work assumes that some mechanism

for this measurement will be available if third-party cookies

are no longer in use. A possible mechanism to measure click

through conversion has been proposed by Chrome [19]. In

this proposal, one would be able to measure whether a user

converts after viewing and clicking on an ad for a brand.

Conversion data could then be gathered, for example, by

showing ads at different websites and observing which ad

placements result in conversions. Note that under this proposal,

gathering conversion data would require the delivery of ads

and therefore require ad spend, so this data comes at a cost.

A. Step 1. Learning URL Embeddings

We wish to embed URLs such that URLs viewed in brows-

ing sessions of similar intent are close in embedding space.

Data similar to ours are found in Natural Language Processing

(NLP), where text data can be viewed as categorical variables

representing millions of words and phrases. Much work has

been done to embed words into a lower dimensional vector

space where feature vectors can take on a continuous range

of values and where semantically similar words are near

one another. This work relies on the distributional hypothesis

[20], which says that words that appear in the same context

have similar semantic meanings. Similar to this hypothesis,

we noticed that URLs with related content are often viewed

directly before or after one another in time. This motivates

adapting NLP methods to create embeddings for URLs.

We adapt the word2vec algorithm from NLP, [10], [11],

which predicts a (target) word from its neighbors (context

words) while learning an embedding vector for each word

as parameters of a model. For any pair of websites visited

by a user in sequence, we analogously define one website as

the target URL and the other as the context URL. We then

use a modified version of the neural network structure used in

word2vec to predict a target URL from a context URL. As a

result, URLs often visited close, in sequence, to a particular

target URL will be close in embedding space.

To train the embeddings online, we cannot use a predefined

dictionary of websites (a mapping from each website to a

unique index), since it would change over time as new websites

appear and disappear in our data stream. Although feature

hashing can be used to remove the need for a predefined

dictionary, using a hash function with a large enough range to

avoid collisions would lead to a very large network.

To reduce the number of parameters in our network while

also taking advantage of feature hashing, we use a method

proposed in [15] to modify the word2vec network structure.

In addition to an initial input hash function with a range of

size N, we use k intermediate hash functions, each with a

smaller range of size M, that map each URL to k intermediate

embedding vectors. We then use k trainable parameters to

select, for each input hash value, the best linear combination

of these k vectors to produce the final embedding vector. This

creates a trainable mechanism to reduce the effect of collisions.

The network structure is shown in Figure 1, and consists of

the following trainable variables:

Compression subnetwork

• An embedding matrix B of size M x d, where d is the

size of the embedding vector (128) and M is the size of

the intermediate hash range (250 thousand).

• A trainable matrix P of importance parameters of size N

x k, where k is the number of intermediate hash functions

(2) and N is the size of the input hash range (2.5 million).

Decompression layer

• A weight matrix of size N x d.
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Fig. 1. Hash embedding network architecture (with k=2, d=128). a) Inter-
mediate hashes (m1 and m2) of the input hash index (n) select embedding
vectors from the embedding matrix B, which are then linearly combined in
the convolution layer to produce the fully compressed hash embedding vector.
b) Trainable parameters on the compression side of the network consist of
the embedding matrix B and the importance parameters P.

In comparison the number of trainable variables in the standard

word2vec algorithm is:

Compression subnetwork

• An embedding matrix of size N x d.

Decompression layer

• A weight matrix of size N x d.

To avoid collisions we choose a large input hash range N.

We tune the size of the intermediate hash range, M, to find the

best trade-off between embedding quality and space-efficiency.

This structure therefore allows us to embed large vocabularies

with many fewer parameters in the compression subnetwork.

We feed pairs of sequential URL visits by each user that

occur within a short time limit into a training batch. While

in this work we chose to record website visits by the domain

rather than the full URL, it is also possible and procedurally

equivalent to embed URLs at deeper levels, as long as there is

adequate visitation volume to the chosen URL and level. The

network is trained on 600 million visit pairs per day. The result

is a numerical embedding of approximately 250K domains,

reducing the dimensionality of our feature space from 250K

to 128.

B. Step 2: Training ID-Free Models

We train ID-Free models to predict which ad opportunities

are most likely to be followed by a conversion, that is, the

action a campaign is trying to drive. The conversion action is

typically a product purchase or visit to the brand’s homepage.

To train ID-Free models, we can use any information found in

the bid request, which in addition to inventory URL includes

features such as the time of day and the device location.

This paper demonstrates our method using models built solely

using ad inventory URL features and leaves the inclusion of

additional features and subsequent feature selection as future

work.

IV. EXPERIMENTS AND RESULTS

First, we compare ID-Free models built using URL embed-

dings as features with models built using a baseline approach

in which URLs are one-hot encoded. In the baseline approach,

we refer to URL features as sparse categorical since URLs

are represented in a high-dimensional, sparse space. For all

experiments we trained logistic regression models, using cross-

validation to choose the best regularization parameters. We

chose to train logistic regression models as these models

are simple and perform well. By significantly lowering the

dimension of our feature space, we enable the use of more

complex model types that would be impractical with a higher

dimensional feature space; our results, therefore, give a lower

bound on performance increase achievable with embedding

features.

A. ID-Free Model Performance

To measure ID-Free model performance, we built models

for 40 advertising campaigns; each model is a classifier that

ranks bid requests by the probability that they lead to a

conversion. As training data, we use inventory URLs from

a week of bid requests, labeling bid requests with conversions

from each advertising campaign. The data for each campaign

were progressively downsampled to create six different sized

datasets, with 488K, 244K, 97.6K, 48.8K, 24.4K, and 9.76K

examples. Each dataset contains the same ratio of negative to

positive examples (60:1). We sampled a test set from a future

day of bid requests with respect to the training set, labeling

a bid request as positive if the device seen on the bid request

was seen taking the conversion action in the following seven

day time period. The performance of the models on the test

set is shown in Figure 2. Here we use two metrics to evaluate

model performance: the area under the ROC curve (AUC), and

the lift at 1% (Lf1), that is, the ratio of the precision of the

top 1% of predictions to the precision of a random classifier.

The plots of both absolute and relative model performance

show that URL embedding features outperform sparse cate-

gorical features for all dataset sizes, and the magnitude of the

performance increase grows as the dataset size decreases. For

smaller datasets the performance of models built with categor-

ical features deteriorates until the models are no longer viable.

Embedding features allow us to build viable models even on

smaller datasets, which will be crucial in a scenario where

third-party cookies are no longer available and conversion data

become harder to obtain.

To further interpret these results, we focus on models

trained with the largest datasets (488K) and examine model

performance on different parts of each test set. Figure 3

shows performance grouped by the number of times each URL

occurred in the training set. This breakdown gives insight into

why models with embedding features outperform those with

categorical features. Models built with categorical features are

unable to generalize; AUC is 50 for websites never seen in

training and increases only as the number of times the website

was seen in training increases. In contrast, AUC for models

built with embedding features is roughly the same regardless

of how many times the website was seen in training, showing

that these models can generalize what is learned from one

website to other websites. This leads to a large difference in

model performance for websites rarely seen and a decreasing

difference in performance as the number of times the website
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Fig. 2. Dependence of model performance on training set size for models
with sparse categorical features (SC, blue) and URL embedding features
(UE, orange). The relative performance is also shown (RP, green). The ratio
of negatives to positives is 60. The whiskers indicate the 10th and 90th
percentiles.

was seen increases. Figure 3 also shows a slight decrease in

performance, for both model types, for the group of websites

seen the greatest number of times. This could be due to very

common websites being less predictive; a website such as

yahoo.com, for example, with a large number of visitors, is

unlikely to be an informative feature for a distinct behavioral

trait.

B. URL Embedding Interpretability

We evaluate the URL embeddings themselves qualitatively

by checking that their relative positions in the embedding

space are interpretable. Table I shows, for example, the closest

websites in embedding space to four distinct travel websites.

This demonstrates that the embedding space is even able to

differentiate between travel subtopics such as cruises, adven-

ture travel, travel deals and wedding destinations.

V. CONCLUSION

We have described a method for ID-Free targeting of digital

advertising that can effectively target users with no identifiers

or user history of any kind. The use of URL embeddings to

encode the URL data is central to our approach, providing a

robust performance improvement compared to a naive feature

representation. This performance improvement is increasingly

Fig. 3. Model performance on subsets of the test set for models with sparse
categorical features (SC, blue) and URL embedding features (UE, orange).
The relative performance is also shown (RP, green). The size of each training
set is 488K and the ratio of negatives to positives is 60. The whiskers indicate
the 10th and 90th percentiles. Performance is shown both for all examples in
the test set (All) and bucketed by the number of times the URL occurred in
the training set.

TABLE I
EMBEDDING SPACE METRIC

Website Closest websites in

embedding space

princess.com directlinecruises.com
cruiseweb.com
royalcaribean.com
ncl.com
cruiseadvice.org

boardingfare.com theflightdeal.com
travelsort.com
thepointsguy.com
frugaltravelguy.com
travelskills.org

destinationweddings.com couples.com
hardrockhotelpuntacana.com
iberostar.com
barcelo.com
riu.org

fodors.com escapehere.com
frommers.com
budgettravel.com
grayline.com
independenttraveler.org

dramatic for smaller training datasets, and in the extreme

case URL embeddings enable the training of useful models

with datasets too small to produce a viable model using the

naive encoding. We showed that when predicting whether

an ad inventory URL will lead to a conversion, ID-Free

models using URL embeddings make predictions of similar

quality regardless of how many times the URL was seen in

training, including for URLs never seen in the training dataset.

This suggests that for training datasets of all sizes, the URL

embeddings approach is so effective because it allows the

models to generalize by applying what was learned on one

URL to improve the prediction on another URL.

The process of training embeddings is both time and data-
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intensive, and in order to capture recent trends and new

websites, the URL embeddings must be trained on recent

data. We shared our approach to building an efficient ID-Free

model building pipeline using a neural network architecture

that enables online learning of URL embeddings without a

predefined dictionary. With continuous availability of up-to-

date embeddings, training the ID-Free models themselves is

quick, allowing us to train many of these models per day easily.

The URL embeddings approach to encoding URL data is

rooted in learned user behavior; the embeddings capture the

patterns underlying common sequences of user web browsing

behavior. As with other applications of the word2vec approach,

it is impressive how well behavioral patterns alone capture

the meaning of each website, creating a rich map of the

relationships between websites. (In fact, at Dstillery we main-

tain a version of the embeddings reduced to two dimensions

using t-SNE that we internally refer to as the “Map of the

Internet” and which has many uses [21].) The behavioral-only

nature of this feature representation also presents a promising

opportunity for future work because it means the represen-

tation could potentially be improved by incorporating other,

entirely complementary sources of information. In particular,

the behavioral approach completely disregards the text on the

page, a likely source of additional information for pages with

rich textual content.

The method for ID-Free targeting presented in this work

can be used to reach the many internet users without third-

party cookies enabled today. It is currently in use at Dstillery,

using the cookie-based data sources described here. Addi-

tionally, this approach will be widely applicable in a future

scenario where third-party cookies are entirely unavailable and

all internet users carry no identifiers when visiting websites

without first-party logins. We have described how both steps

of this approach can be adapted in a straightforward way to use

data from cookie-free sources. In this scenario, acquisition of

labeled training data will likely come at a cost per example, so

any practical implementation of a predictive targeting solution

will require an approach that learns more from less data. Our

URL embeddings approach accomplishes this by supplement-

ing the information in the training dataset with an information-

rich feature representation; the model borrows information

from the URL embeddings. Without third-party cookies, we

anticipate a substantial proportion of all digital advertising

impressions will be delivered without any user identifiers. This

approach to ID-Free targeting, which is practical to implement

and enables precise predictive targeting, provides a way for

advertisers to continue to deliver performance advertising

campaigns at scale, regardless of the availability of third-party

cookies.
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