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ABSTRACT

A growing proportion of digital advertising slots is purchased

through real time bidding auctions, which enables advertisers to

impose highly speci�c criteria on which devices and opportuni-

ties to target. Employing sophisticated targeting criteria reliably

increases the performance of an ad campaign, however too strict

criteria will limit its scale. This raises the need to estimate the num-

ber of anticipated ad impressions at a given campaign performance

level, thus enabling advertisers to tune the campaign’s budget to

an optimal performance-scale trade-o�. In this paper, we provide

a way to estimate campaign impressions given the campaign cri-

teria. There are several challenges to this problem. First, the cri-

teria contain logic to include and exclude combinations of audi-

ence segments, making the space of possible criteria exponentially

large. Furthermore, it is di�cult to validate predictions, becausewe

wish to predict the number of impressions available without bud-

get constraints, a situationwe can rarely observe in practice. In our

approach, we �rst treat the audience segment inclusion/exclusion

criteria separately as a data compression problem, where we use

MinHash “sketches” to estimate audience size. We then model the

number of available impressions with a regularized linear regres-

sion in log space, using multiplier features motivated by the as-

sumption that some components of the additional campaign crite-

ria are conditionally independent. We construct a validation set by

projecting observed RTB data (under real budget constraints) to

get impression availability without budget constraints. Using this

approach, our average prediction is a factor of 2.2 from the true

impression availability, and the deployed product responds to user

requests in well under a second,meeting both accuracy and latency

requirements for decision making in the execution of advertising

campaigns.
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1 INTRODUCTION

Digital advertising monetizes approximately $200 billion world-

wide each year[1]. Historically, brands used to think about target-

ing in terms audiences — a set of consumers who were considered

desirable based on some speci�c criteria — often in terms of de-

mographics (e.g., women of a certain age range). Such an audience

has a certain natural cardinality — typically much larger than the

marketing budget for any given advertising campaign. These au-

diences were assumed to consume certain media, say the “Oprah

Winfrey Show”, and based on estimated viewer levels, a spot in

that show was priced.

Fast forward to programmatic advertising: A growing propor-

tion of digital ad slots are purchased through real time bidding

(RTB), where an individual’s loading web page or mobile app (the

publisher or inventory) announces the availability of an ad slot to

an ad exchange. The ad exchange runs an automated auction with

multiple potential buyers, who execute ad campaigns on behalf of

marketers or advertisers (brands). The buyer with the highest bid

typically wins, and the resulting ad showing by the winning buyer

is known as an impression.

One of the major reasons for the growing popularity of RTB

is the �exibility with which it allows marketers and buyers to

decide when, to whom, and in what context their ads should be

shown. With the ability to target individuals directly, measurable

outcomes (clicks or post-view conversions), and large amounts of

data on the individual’s digital history, machine learning models
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have become the workhorse for predicting the probability of every

individual to take the desired action. These models now provide a

ranking of the entire population, and in order to maximize perfor-

mance of a campaign, only those consumers with the highest con-

version propensity should be targeted.While conceptually straight

forward, it is di�cult to connect this understanding with the tra-

ditional notion of audiences. Because now a good audience is say

the top 1 percentile ranked by a speci�c model. The optimal size

of that percentile has to be a function of the budget the marketer

is willing to spend. If it is too big, performance will su�er as lower

propensity consumers are entering the audience. If it is too small,

the campaign does not deliver and the marketer fails to spend the

budget.

To further complicate the issue, campaigns typically have a

plethora of additional delivery constraints: marketers can decide

to serve only to opportunities appearing in speci�c geographical

locations, only on speci�c apps, or to certain device types, or any

combination of the above. With this �exibility comes an interest-

ing question: under the given campaign criteria, howmany impres-

sions is a buyer able to deliver for the (remaining) lifetime of a cam-

paign? Knowing the answer not only greatly helps a marketer plan

the budget to spend on a buyer’s platform, but also helps a buyer

to request a proper budget number or adjust the criteria/audiences

if necessary.

We will de�ne avail as this campaign capacity under the cam-

paign criteria. Estimating it at low latency and enterprise scale has

proven to be a major challenge in the industry. It is of course pos-

sible to get an estimate by naive counting (database query) on his-

torical data. However, even on only a 1% subsample, a Hive query

takes about twenty minutes and yields poor user experience1.

Conceptually, avail estimation is similar to a subpopulation den-

sity estimation problem. The other approach would therefore be to

assume independence among di�erent components in the criteria.

While some components can be assumed to be independent, others

unfortunately have correlations.

A campaign audience is often a combination of di�erent seg-

ments of consumers2. The goal of prospecting campaigns is �nding

new customers for a product or brand, while retargeting is serving

ads to past customers. For prospecting, individual devices/cookies

are scored by machine learning models into segments that cor-

respond to percentiles. Dstillery builds a large number of mod-

els to predict conversion propensities for a large number of de-

sirable outcomes[4, 15]. In fact, we often have multiple models

all predicting conversions using di�erent machine learning algo-

rithms, and brands often simultaneously target high-conversion-

probability segments given by di�erent models.

Audience segments can also be de�ned without brand-speci�c

predictive models. Examples include segments of people who have

visited a particular store or a particular web site and interest sub-

populations, such as technology enthusiasts and health care pro-

fessionals. As a result, segments can have high membership over-

lap, which makes the size of the union of several segments dif-

ferent from the sum of individual segment sizes. For example, a

1One might propose to add better technology and hardware to the solution, this how-
ever would be notably less cost e�ective than the solution in this paper.
2We use the term segment as some basic set of consumers de�ned somehow whereas
audience is a derived set of consumers that are selected for a speci�c campaign.

high conversion audience segment for hotels can overlap with a

generic travelers segment. It is very common for campaigns that

the targeted audience is a combinations potentially overlapping

segments. We tackle this particular violation of independence by

using a data compression algorithm which provides cardinality es-

timation.

The methodologywe develop for audience size estimation is ap-

plicable to a wide range of cardinality estimation problems in a va-

riety of business domains. Our primary use case is the execution of

prospecting campaigns. These campaigns can be executed directly

by the organization that creates themodels and resulting segments.

Increasingly, secondary players specialize purely on the execution

side and allow the marketer to inject their own audience segments

(mostly through CRM integrations) or to buy modeled or other-

wise created segments from data providers. This is called audience

syndication. Reliable avail estimation becomes even more impor-

tant when segment creation and execution is decoupled since it is

now impossible to directly tune segment sizes to a singular cam-

paign. Audience size estimation not only lets data providers send

the desirable campaign scale (number of impressions) information

to the platform, but also allows them to create di�erent campaign

scales at various campaign performance (number of conversions

per impression) levels, so marketers can tune their campaigns to

the optimal performance-scale tradeo�.

Another application is the ability to provide marketing insights.

Brands are interested in understanding as much as possible about

their customers. Such knowledge can be, for example, people who

visit a certain store or have this common interest are X times more

likely to visit my brand’s homepage than an average person. The

computation of X involves knowing the size of the intersection of

two sets, namely store visitors and homepage visitors.

Our methodology provides a solution to these problems at low

response time and enterprise scale.

The rest of the paper is organized as follows. Section 2 captures

problem setup and business requirements. Section 3 is an outline

of the bidding process. Section 4 formulates the problem and de-

scribes challenges and our high-level approach. Section 5 is on fea-

ture estimations, Section 6 on model building and evaluation, and

Section 7 on live product performance.

2 PROBLEM SETUP & BUSINESS
REQUIREMENTS

Avail forecasting aims to provide an estimate of an ad campaign’s

impression delivery capacity on a buyer’s platform, given a set of

campaign criteria. Campaign criteria are of di�erent nature. The

main one is the audience — a selection of consumers to be reached.

Other specify constraints under which the ads are delivered. Com-

paign criteria include

Audience

Marketers choose the audience as a combination of consumer

segments to target. If the marketer selects many or very large seg-

ments, the campaign will reach a very wide audience, but the per-

formance will be low. On the other hand, if the marketer only

selects the best segments scored by the campaign’s conversion

model, the campaign will have limited reach, but a high conver-

sion rate. Avail forecasting is a necessary tool to help a marketer
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to explore the tradeo� and �nd a near sweet spot in terms of size

and performance even before the start of campaign.

As mentioned, audience segments can have notable member-

ship overlap. Forecasted avails should remain accurate under the

selection of overlapping audiences.

Additionally, marketers often not only wish to include segments

but also exclude certain subpopulation of consumers. The most

common scenario is the exclusion of existing customers of the

brand from a prospecting campaign as retargeting campaigns of-

ten have di�erent prices and creatives and are executed separately.

It’s likely that devices in retargeting segments also score high by

the conversion model and therefore will be in the good prospecting

segments, resulting in an overlap between inclusion and exclusion

segments. Depending on the brand, retargeting segments can be

very large and nearly “wipe out” the top 1% prospecting segments,

causing severe underdelivery. Avail forecast should remain accu-

rate under those conditions, too.

Context

Context refers to the targeting media context such as

(1) environment type, i.e., whether to target opportunities in

WEB browsers or in APP or both

(2) device class, for example desktop, smart phone, tablet, or

any combination of these

(3) ad type, i.e., whether the ad slot is for a display ad or video

ad.

Geographical area

The targeting geographical area can be speci�ed in several for-

mats such as country, any combination of states, or any combina-

tion of postal codes, etc.

Viewability

Viewability is the probability of an impression being rendered

in view. Viewability predictions are either obtained through a third

partyAPI ormodeled from viewability measurement data. In either

case, viewability requirement is input by the user as a percentage,

namely, I want to target the top X% viewable opportunities. This

has an obvious impact on delivery.

Bid price

Finally, the last campaign parameter that a�ects the ability to

deliver ads is the bid price since the probability that a bid wins the

auction on the ad exchange and becomes an impression is sensitive

to bid price. Under otherwise equal circumstances, bidding high

will increase delivery. Most execution engines have some levels

of bid optimization and will adjust individual bids, but marketers

typically set some price for the average or maximum bid they are

willing to make. In order to optimize bid prices, Dstillery bundles a

campaign’s audience segments into smaller groups called spends,

with each spend given a custom bid price re�ecting the conversion

propensity of that spend.Wewill elaborate on the concept of spend

later in the paper.

Given all these components, the avail forecasting product

should have an interface where users input the above parameters

and can alter them interactively. This suggests that the product

has to respond to user requests fast (under 1 second or faster) to

make this tool useful. The resulting feedback can either be the total

number of deliverable impressions or, given the average bid price,

a total budget for the campaign. Our goal is to give users an ex-

pected budget estimate that is accurate within a factor of three in

most cases. The product also outputs avail as a range centered at

our prediction.

3 BIDDING PROCESS

In order to provide background for later sections, we provide an

overview of the steps that a bid request (BRQ) from an ad exchange

passes on the buyer’s platform.

When a device goes online, the ad exchange generates a BRQ as

an invite for interested buyers tomake bids to show their ads in the

vacant ad slot. The BRQ is populated with contextual information

such as the device id, URL of the publisher, and the geographic

location of the device.

Bidder is the buyer’s highly sophisticated system that decides

what ad to show and bids in real time. The bidder applies a chain

of �lters on the opportunity, values the opportunity, and responds

with a bid. The buyer, executing multiple campaigns on behalf of

multiple marketers, conducts a mini-auction within its own sys-

tem to pick one ad from many ad candidates. The bid winning the

internal auction is then sent to the exchange where it competes

with other buyers in what we refer to as the external auction.

A high-level view of an industry-general bidder pipeline is

shown in Figure 1. A BRQ undergoes the following phases in a

typical bidder.

Figure 1: A high-level view of an industry-general bidder

pipeline

Information Augmentation. The buyer will augment a BRQ’s in-

formation with additional known facts such as the device’s audi-

ence segment memberships.

Quality Assessment. Don’t bid, for example, if the inventory is

of poor quality, for example if the site contains adult content, or if
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fraud [18] or header bidding is suspected. In our system, this step

eliminates 50% of the billions of BRQs seen daily.

Ad Candidate Selection. The complete list of ad candidates in

the system (e.g., spends in Dstillery’s system) are considered and

evaluated against the opportunity. If an ad candidate’s campaign

targets, say a speci�c ad size or postal code, and the BRQ does

not meet these requirements, the ad candidate is eliminated from

contention.

Value Estimation and Price Adjustment. The forecast of an ad

candidate’s probability of getting a desired outcome, e.g., a click or

conversion, is based on the device’s browsing history, the inven-

tory, and how often the device has been shown an ad from the same

marketer3. Viewability is also evaluated. The selection of viewable

opportunities is often implemented as a �lter, whereas the click /

conversion valuation results in a bid price adjustment[14].

Internal Auction. The highest bid among the remaining ad can-

didates is sent to the exchange.

Some of the �lterings, such as geo �ltering, result from the cam-

paign’s criteria. Avail forecasting accounts for these �lters. Other

�lters are either modeled as a fractional pass rate or is irrelevant

for avail forecasting. For example, pacing �lter[12], which rejects

opportunities based on the campaign’s budget constraint, is irrel-

evant, since avail forecasting aims at estimating delivery in the

absence of budget constraints.

The ad exchange determines which bid wins the external auc-

tion, mostly based on bid price.

4 PROBLEM FORMULATION, CHALLENGES,
AND CONCEPTUAL APPROACH

4.1 Problem Formulation

An avail is de�ned as the impression count projection over a pe-

riod of time. Under given targeting criteria and bid price, the im-

pression count �uctuation from day to day is small. For simplicity

of illustration, we will focus on predicting daily impression deliv-

ery in this paper. Each day, we receive a number NBRQ of BRQs4.

The avail A is simply

A(C ) = NBRQ · pi (C ) . (1)

where C denotes the campaign criteria (audience, context, geo-

graphical area, etc.) and bid price, and pi (C ) is the probability that

a random BRQ becomes an impression given the criteria and bid

price. NBRQ is also a stable number in our system. Therefore, for

simplicity of illustration, we will focus on predicting probability

pi (C ) from C in the following exposition.

The campaign criteriaC are de�ned as a set of logical operations

C = AudSeд & EnvType & DevClass & AdType &

Geo & Viewability & BidPrice (2)

containing AND’s between audience segments, environment types,

device classes, ad type, and geographical areas. Let’s elaborate on

each.

3Often, there are limits (frequency cap) on the number of times a device can be shown
ads of the same campaignwithin a short period of time (one day for example), because
the conversion would be attributed to only one impression.
4Our system �lters poor quality opportunities (adult content sites and fraud) and du-
plicate opportunities (header bidding). All quantities here, including NBRQ , represent

numbers after such �ltering.

Audience segment is speci�ed as an inclusion segment list with

an exclusion segment list. Users target people who fall in any of

the segments in the inclusion list but don’t belong to any of the

segments in the exclusion list. We denote this as a set di�erence

AudSeд = IncSeд \ ExcSeд . (3)

Segments can have overlap. We write inclusion and exclusion audi-

ence segments both as chained lists of logical OR’s.

IncSeд = IncSeд1 ‖ IncSeд2 ‖ ... ‖ IncSeдNi , (4)

ExcSeд = ExcSeд1 ‖ ExcSeд2 ‖ ... ‖ ExcSeдNe , (5)

where Ni and Ne denotes the number of inclusion and exclusion

segments, respectively.

Environment type can be either WEB or APP or both. Note that

WEB and APP are disjoint advertising channels.

Device classes (desktop, smart phone, tablet, etc.) are also dis-

joint and speci�ed as a list.

Ad types (Display vs Video) aremutually exclusive. A campaign

either serves display ads or video ads but never both.

Geographical area can be speci�ed as follows, 1) an entire coun-

try (for example targeting all US) or a list of countries, 2) if one

country is selected, the area speci�cation can contain a list of states

(in that country), a list of postal codes, or a list of designated mar-

ket areas (DMAs). In our use case, only one of these three speci�-

cations is allowed5. Note also that countries, states, postal codes,

and DMAs are all non-overlapping concepts (for example, no place

in a country simultaneously belongs to two states or two postal

codes).

The above is the problem that we solve, but our methodology

applies to a general class of problems. In the general problem, the

“criteria” contain a chain of logical AND operations. Each operand

is a chain of OR operations. The operands of some of these OR

operations can have set overlap.

4.2 Challenges

The problem involves an exponentially large number of possibili-

ties in each dimension or component of the campaign criteria. For

example, in the segment dimension, under Equations (4) and (5),

there are 2N − 1 segment combinations for N segments. As a re-

sult, data storage and response time are major challenges. A naive

database query approach would take too long. An attempt to store

all the counts would be impractical. A feasible approach should

featurize the criteria C and compress complex data to reasonable

size for storage, and retrieval / estimation should be fast enough

to yield sub-second or faster response.

The retrieval algorithm needs to compute engineered features

of the criteria C , and predict the avail from these features. How

to featurize any arbitrary segment combination for an audience,

while supporting overlaps and exclusions, is not obvious. For ex-

ample, when estimating the size of AudSeд under the de�nitions

in Equations (3)-(5), if one simply computes the sum of the sizes

of Ni inclusion segments and subtracts from that the sum of the

sizes of Ne exclusion segments, one would get that, for 40% of the

thousands of active spends running on our platform, their audience

sizes are negative! A proper estimation should never do that.

5Users never ask us to target both states and DMAs in one campaign.
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Additional challenges are present in accurately predicting A(C )

from the criteria in Equation (2). Some �lters in the bidder are not

captured by C . For example, some campaigns run on selected in-

ventories. Furthermore, it turns out that the probability that a bid

wins in the external auction depends on additional factors not cap-

tured in C , such as the ad exchange.

Finally, it’s not clear how to measure A(C ) because we don’t

directly observe the avails of our campaigns and spends but instead

observe delivery numbers under campaign budget constraints.

4.3 Conceptual Approach

Given the challenges in computing A(C), we make a conditional

independence assumption. First of all, WEB and APP are disjoint

advertising environments. If both are selected, our avails calcula-

tion is split into two independent pathswhere in each path the avail

in one environment is computed, and �nally, the result from both

paths are added. For simplicity, we will assume only one environ-

ment type is selected in the rest of the paper. Our deployed product

extends beyond this assumption.

Conditioned on the speci�ed environment type, we assume that

segment, (the device class and ad type components of) context, and

geo are mutually independent. The reason we condition on envi-

ronment type is that, di�erent segments can have very di�erent

size proportion splits over WEB and APP environments. Some seg-

ments are dominantly WEB, some dominantly APP, and others in

between.We need to capture the EnvType dependence ofAudSeд’s

size.

Under the criteria of Equation (2), the probability for a BRQ to

become an impression is

pi (C ) = p (EnvType ) · p (AudSeд | EnvType ) ·

p (DevClass & AdType | EnvType ) · p (Geo | EnvType ) ·

p (Viewability) · PF (EnvType ) · WRi · WRe , (6)

where p (Viewability) is simply the top X% viewability targeting

percentage that a user speci�es, PF (EnvType ) represents an aver-

age pass factor for �lters in the bidder pipeline that are not cap-

tured in the criteriaC and is modeled just as a function of the envi-

ronment type6, andWRi andWRe are the probabilities that a bid

wins in the internal and external auctions, respectively. Win rates

could be functions of features such as bid price and ad type.

Here are a few comments. 1) EnvType , DevClass , AdType all

have low cardinality7 . In practice, we aggregate all of them in a

single context step and call that p (Context ). Therefore, Equation

(6) becomes

pi (C ) = p (Context ) · p (AudSeд | EnvType ) ·

p (Geo | EnvType ) · p (Viewability) ·

PF (EnvType ) · WRi · WRe . (7)

2) The conditional independence assumption signi�cantly reduce

the amount of data we need to store8.

6PF (EnvType ) is di�erent from p (EnvType ) which is the probability a BRQ is in
the given environment type.
7There are less than 50 of all possible (EnvType , DevClass , AdType ), i.e.,
Context combinations.
8For example, since there are dozens of contexts and only two environments,p (Geo |
EnvType ) has a much smaller dimension than p (Geo | Context ).

For p (Context ) we just count the fraction of BRQs in the given

context. Di�erent device classes have no overlap. When multiple

device classes are selected, we just add the probability of each. Be-

cause geographical locations have no overlap either, we also just

count and add to get p (Geo | EnvType ).

As mentioned earlier, querying, storing, and looking up all seg-

ment union sizes would be impractical. p (AudSeд | EnvType ) can

only be estimated. The problem is to estimate the union size of

overlapping sets. For such cardinality estimation problems, vari-

ous data compression algorithms, for example, Bloom�lter [13, 19]

and MinHash exist. These algorithms compress individual sets

into “sketches” and estimates the union cardinality based on the

sketches.

We explicitly model external win rateWRe because it has high

variance. We �nd the brand’s industry sector to be predictive of

win rates, so we make industry an input feature.

Combining Equations (1) and (7) we get

A(C ) ∝ p (Context ) · p (AudSeд | EnvType ) ·

p (Geo | EnvType ) · p (Viewability) ·

WRi · WRe (8)

whereNBRQ and PF (EnvType ) are absorbed into a proportionality

constant that only depends on EnvType .

In practice, to estimate A(C ) we take the log of both sides of

Equation (8) and �t a regularized linear regression model

logA(C ) =
∑

k

βkxk + α (9)

where every but a few xk is the log of a term on the RHS of Equa-

tion (8), every βk is a coe�cient, and α is an intercept that depends

only on EnvType . We include categorical industry feature in place

ofWRi among xk . W also include bid price and categorical ad type

as features.

Our solution to the challenge of measuring A(C ) in the absence

of budget constraints is to correct the delivery number for budget

constraints. More details are in Section 6.

5 ESTIMATIONS

5.1 Context and Geo

For context, we aggregate our BRQs by environment type, device

class, and ad type. Then p (Context ) is just the sum of the propor-

tions of BRQsmeeting the context criteria. For geo, we do the same

except p (Geo | EnvType ) is the sum of the conditional probabilities

of a BRQ to be in the user speci�ed geographical areas.

5.2 Segment

Our goal here is to estimate the probability that a BRQ’s device be-

longs to a segment. Segments are de�ned as collections of brows-

ing devices. If we assume that the number of BRQs per device is

insensitive to segment, we can estimate p (AudSeд | EnvType ) as

the probability of a device being in a segment, i.e., # of devices in

AudSeд / total # of devices, conditioned on EnvType . This signif-

icantly reduces the problem size because we see on the order of

100 billion BRQs per day, but on the order of 100 million unique

devices per day.
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It is impractical to pre-compute the cardinality for all segment

combinations. We must estimate. Cardinality estimation typically

takes the form of using compressed representations of sets, called

sketches[20], in place of entire sets. A sketch retains enough infor-

mation from a set that one can estimate the size of the set from the

sketch. Many types of sketches allow for two sketches to be com-

bined to produce a new sketch that is representative of the union.

There are di�erent sketching techniques with di�erent advantages.

We’ve considered two: Bloom �lter and MinHash.

A set can be sketched as a Bloom�lter, which is comprised of an

m-sized bit array where the indices of occupied bits are the hashes

of set members (entities), in our case, device id’s. The bits are ini-

tialized to 0 (indicating an empty set), but when an entity is en-

countered, it is hashed into the range of indices, and the bit at such

index is changed to 1, indicating that the entity belongs to the set.

Bloom �lters are typically used to test for set membership and is

applied in distributed database systems.

Bloom �lters can also be used to estimate the size of a set. If a

(fed) Bloom �lter of size (hash range) m that uses one hash func-

tions has X bits set to 1, we can estimate the set cardinality n as

[13, 19]

n = −m ln
[

1 −
X

m

]

. (10)

Note that X/m is the density of occupied bits in the Bloom �lter.

Bloom �lters can be combined with a bit-wise OR operation to

compute the sketch of the union set without losing �delity. One

might expect to be able to combine Bloom�lters in a bit-wise AND

to compute the Bloom �lter for the intersection, but this operation

loses �delity. However, using the set cardinality identity,

|A ∩ B | = |A| + |B | − |A ∪ B | (11)

we can estimate the cardinality of the intersection from the

union[19]. Similarly, we can use set operations to estimate the car-

dinality of set di�erence

|A \ B | = |A ∪ B | − |B | . (12)

We use this to estimate the audience size when the campaign cri-

teria contain segment exclusions like in Equation (3).

A Bloom �lter becomes “saturated” when too many bits have

been set to one, which reduces the accuracy of our cardinality es-

timation for sets that are large relative to size of the Bloom �l-

ter. This is problematic because our segments may be very large,

sometimes close to 100 million members, which would require a

Bloom �lter of more than 100 million bits, or around 12.5 MB in

disk space. This adds up quickly, to 200 GB for all the segments in

our system. We decide against using Bloom �lters for our sketches

because MinHash sketch o�ers advantages.

MinHash is another sketching approach. Feeding a MinHash

sketch is similar to feeding a Bloom �lter. For each entity we hash

it into a hash range, but we only keep the p-smallest hash values

in a reservoir. If the set size is less than p, we keep all hashes. The

MinHash sketch is comprised entirely of this reservoir of hash val-

ues.

We can take advantage of keeping only the least hash values for

our reservoir to estimate cardinality from a MinHash sketch. If a

MinHash reservoir contains q (q ≤ p) integers, and the greatest

of them is M , the “density” of occupied bits can be estimated as9

(q − 1)/M . Using this estimate and Equation (10), we can estimate

the set size as10

n = −m ln
[

1 −
q − 1

M

]

. (13)

Because for MinHash we store the smallest p hashes rather than

the entirem-size bitarray, we can setm really large. This dilutes the

density of occupied bits, reduces hash collisions, and therefore in-

creases estimation accuracy. A MinHash sketch “saturates” much

more slowly than a Bloom �lter, because of the much greater hash

range that can be used, so MinHash sketches can be used to esti-

mate the size of a much larger set than Bloom �lters under equal

storage cost. In our system, we usedMinHash sketches of reservoir

size p=100, and all sketches took just 40 MB to store, as opposed to

the Bloom �lter sketches which took 200 GB.

In order to test the accuracy of Equation (13), for each (single)

segment on WEB, we counted its true device count, estimated the

count with MinHash, and compared the two. Figure 2 plots, on

a log scale, the MinHash estimated segment size against the true

segment size (blue). The plot contains 75913 points. A hypothetical

perfect estimationwhich always estimates the exact truth is shown

(red) for comparison. It’s clear that Equation (13) gives very good

segment size estimations.

Figure 2: Testing accuracy of MinHash cardinality estima-

tion on single segments. Truth vs. MinHash estimation is

shown in blue. An estimation that always equals to truth is

shown in red.

MinHash sketches for sets can be combined to generate the

sketch of the union, by simply “set-union”-ing the reservoirs and

keeping the (up to) p smallest hashes. MinHash and Bloom �l-

ter both have distributive property over the union operation. The

“union” of the MinHashes of individual sets is equal to the Min-

Hash of the union of individual sets. Therefore, MinHashes don’t

lose �delity under union operations. Experiments over simulated

data shows 3% cardinality estimation error of the union of 100 sets

9We assume the integer hash value starts at zero.
10If q < p , we don’t need to estimate, and we know n = q .
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whose sizes are distributed similarly to segment sizes in our sys-

tem. Similar to Bloom �lters, intersecting Minhash sketches hurts

�delity, so Equation (11) is used to estimate the size of set intersec-

tions. We use Equation (12) to estimate audience size in the pres-

ence of segment exclusions.

5.3 Internal Win Rate

Internal win rate is the probability that the ad candidate gets se-

lected over competitor ad candidates from a di�erent campaign or

di�erent spend. We collect spend level aggregated data before and

after the internal auction and �nd that the average internal win

rate on our platform is 32%, much higher than the average external

win rate of 4%. Furthermore, we �nd a trend that, over time, cer-

tain industries, such as retail and healthcare (travel and non-pro�t)

often have higher (lower) internal win rates. Therefore, industry

feature is used in the �nal model to capture this trend.

5.4 External Win Rate

The most important factor in winning the external auction is bid

price. A gradient boosting[7, 8] model trained to predict external

win rate revealed a few other quite important features, such as

the ad exchange. Some of these, such as ad exchange, are not in-

puts that user specify. The complex interactions between the ad

exchange, publisher, and the marketer of the bid [17] presents an-

other challenge to accurately predicting external win rate.

Our approach goes as follows. The range of past bid prices (per

thousand transactions) o�ered up to the exchange are broken into

10 cent buckets. For each bucket, the number of bid counts and im-

pression counts over the past week are aggregated. Their ratio is

calculated as the external win rate. The goal here is to �nd a func-

tion that �ts themeasurements. Themeasured data points show, as

expected, a monotonic relationship between bid price and win rate.

However, the relationship was clearly nonlinear and so the task

becomes �nding a curve that adequately �ts the measurements.

Video opportunities are much more expensive to win than display

opportunities, ant therefore deserve separate treatment. Video and

display win rate curves di�er in that display win rates are linear at

low bid prices, whereas video win rates stay close to zero and don’t

show signi�cant increase until bid price is above some threshold.

Both curves slowly saturates as the bid price increases. We �nd

that no function �ts both Video and Display, so each requires a

distinct �t.

We �t the display win rate curve with Equation (14) where p is

bid price, and γ and c are �tting parameters. This function has the

desirable property that it is linear at low p and saturates at γ as

p →∞ and is introduced in [23].

WRe (p) =
γ · p

c + p
(14)

We �t the video win rate curve with Equation (15) with parame-

ters γ , c , and θ . This function has the desirable property that it is

exponentially small at low p and saturates at γ as p →∞.

WRe (p) =
γ

1 + exp [−θ · (p − c )]
(15)

The optimal �tting parameters γ and c take di�erent values for

Display and Video.

Figure 3 shows the external win rate �t as functions of bid price

for Display and Video11.

Figure 3: External win rate �ts as functions of bid price per

thousand transactions.

Seasonal factors a�ect win rate. For instance, near Black Friday

and Christmas, the market place gets more competitive and win

rates typically drop for the same price level. Both functions are

re�tted on a weekly basis to allow for changes in market behavior.

The �tted parameters change slightly over time.

6 MODEL BUILDING AND EVALUATION

Collecting avail data for all possible combinations of campaign cri-

teria would be impossible. Constructing a large number of test cam-

paigns, running them as experiments, and measuring their avails

would be too costly for our business. Therefore, we evaluate our

model based on the campaigns already running on our platform.

Spend is the central entity for the evaluation of avail forecasting.

A spend is any number of audience segments grouped together

for targeting and is basically a mini-campaign. A spend can also

have geo targeting and device-type criteria on it. It has a set bid

price, which re�ects the relative performance of the spend. A cam-

paign has multiple spends, for example, retargeting spends and

prospecting spends, etc. As mentioned earlier, even for existing

spends there’s challenge in measuring their avails.

6.1 Data Collection and Feature Engineering

Preparing data for model building and evaluating model perfor-

mance is nontrivial because under campaign budget constraints,

it’s not clear what the true avail is that we should predict. Clearly,

we should not �t our model to the number of impressions we ob-

serve in each spend. In our system, every campaign’s budget is al-

located over the duration of the campaign into daily budgets. The

pacing �lter controls how many opportunities each campaign gets

based on its budget constraint, and these opportunities are open to

the best performing spends in the campaign, with the rest of the

11In each plot, some data points, especially at high prices, are far from the �tted curve.
External win rates are a�ected by factors beyond bid price, such as ad exchange and
campaign. Exchange is not an input of our problem, because campaigns run on mul-
tiple exchanges. Outliers could be due to a single campaign running at a speci�c bid
price. Our inclusion of industry feature captures campaign speci�c e�ects to some
degree. Also, we bid predominantly at low price.
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spends partially or completely throttled. Everyday for each spend,

we aggregate and log pacing �lter’s throttle attempts Nattempts (#

of opportunities reaching the pacing �lter) and passes (# of oppor-

tunities the pacing �lter lets through).We can use them to calculate

a throttle pass rate

tpr = Npasses/Nattempts , (16)

which is a daily aggregate number and is close to 1 for well per-

forming spends, between 0 and 1 for medium performing spends,

and close to 0 for underperforming ones. We use tpr to correct the

spend’s daily impression count Nimp to get a spend’s impression

avail in the absence of budget constraint, i.e.,

A(C ) = Nimp/tpr . (17)

This A(C ) is the quantity that we’ll predict with our model Equa-

tion (9). It is worth noting that many spends in our system have

very few Npasses or very few Nimp . These small numbers appear-

ing in Equations (16) and (17) increase the variance or error12 of

the dependent variable A(C ). For this reason, we discard spends

with Npasses or Nimp less than 10 in our data.

Every day, we collect and stage yesterday’s BRQ counts aggre-

gated by context / geo, yesterday’s segment MinHashes, win rate

over the past week, and yesteday’s Nimp and tpr . We generate the

dependent variable A(C ) and model features xk , including Min-

Hash segment size estimates and �tted external win rates, based

on these staged data. A ridge linear regression model of Equation

(9) is then �t.

6.2 Model Fitting and Results

To prevent over�tting, data is split into training and test sets. The

L2-regularization strength of the linear model is tuned using cross

validation solely based on training set data.

Below are model �tting results on a typical day. There are 558

active spends on our platform that meet the minimal impression

count requirement. The training set contains 390 (70%) spends, and

the test set contains 168 (30%) spends. The linear model of Equation

(9) gets an R2 metric of 0.80 on the training set and an R2 metric of

0.73 on the test set.

Table 1 shows coe�cients βk of continuous features in the

model of Equation (9). All continuous features have positive coe�-

cients as expected13. In particular, several of them have coe�cients

close to 1 as would be the case under Equation (8). The categorical

Table 1: Coe�cients of continuous features in the model

Feature Coe�cient

logp (Context ) 2.81

logp (Viewability) 1.28

logWRe 1.05

logp (AudSeд | EnvType ) 0.68

logp (Geo | EnvType ) 0.58

12Both Npasses and Nimp are counts, and therefore their variances have a square
root relation with their values under Poisson statistics. Their relative variances could
be large when their values are small. These relative errors propagate to A(C ).
13All continuous features have Z-scores greater than 4 except logp (Context ).

industry and ad type features get a range of coe�cients from posi-

tive to negative. Adding log(BidPrice ) as a feature doesn’t improve

R2, so we leave log(BidPrice ) out from the model.

Figure 4 is a plot of the log of the true avails (in base 10),

logA(C ), against model predicted log of avails for all active spends

in our system. Blue (red) dots represent training (test) set samples.

There’s a clear positive correlation between model prediction and

truth. The average the di�erence between predicted and true log

of avails is 0.35, which means on average our prediction is a factor

of 100.35 = 2.2 from the true avails. This is good enough from a

product perspective as we aim to give ballpark avail estimates.

Figure 4: A plot of true avails versus predicted avails. Both

are in base 10 log scale. Blue (red) dots represent training

(test) set samples.

For comparison, the test-set R2 using a linear model with

simple features, namely the same features except with 1) each

spend’s p (AudSeд | EnvType ) estimated as the sum of its inclu-

sion segment sizes rather than estimated from MinHash and 2)

log(BidPrice ) to represent the win rate instead of the curve-�tted

logWRe , is also 0.73 . We suspect that, although MinHash should

give a better p (AudSeд | EnvType ) estimation, the noise in A(C ),

due to other bidder pipeline �lters not captured by the inputs in

Equation (2) and factors beyond the inputs that a�ectWRe , may

obscure the bene�t of using MinHash.

7 LIVE PERFORMANCE EVALUATION

The avail forecasting tool is deployed as a product for our clients.

The product’s pipeline starts with ETL in Spark SQL and HiveQL,

which process our logged BRQ and bid data, impression data, and

device segment data (all in Hive tables). The curve �tting and

machine learning are done with SciPy and Scikit-learn. Features

and model coe�cients are saved to database. A Java micro-service

Applied Data Science Track Paper KDD 2018, August 19-23, 2018, London, United Kingdom

751



loads them into memory14, computes probability multipliers, in-

cluding p (AudSeд | EnvType ) which is estimated with MinHash,

and then computes the avail result.

7.1 User Feedback

Our product, account management, and sales teams have given

much positive feedback. Our colleagues used the product in pre-

sales processes to con�rm how much budget we feel comfortable

spending in certain geographical locations and on various seg-

ments. Our external clients asked for estimates and we were able to

deliver the estimated numbers. The product computes avail num-

bers that are accurate (after observed impression counts are con-

verted to avail counts) and realistic. The product has been a huge

time saver. Until the product went live, our colleagues had to pull

numerous charts, calculate many estimations, and take a leap of

faith to create an avail estimate. Now it’s fast and as simple as a

few clicks!

In more recent weeks we hear about increased revenue being

tied to this product. A major revenue driver for our company is the

amount of incremental budget we can take on mid-way through a

campaign. Based on what audiences are performing well, our ac-

count managers can use the tool to justify that the client can and

should spend more budget in order to increase their returns on

investment.

7.2 Runtime Comparison

Our existing implementation is fast, returning responses in less

than 0.1 second. This is largely due to the two simplifying treat-

ments, conditional independence and MinHash cardinality estima-

tion.

Conditional independence makes the underlying data set size

far smaller than the actual Cartesian product of the dimensions.

Without the independence simpli�cationwe have to traverse every

row of BRQ data, check it against user’s campaign criteria to deter-

mine if it should be included in the estimate, and then sum it into

the total.With conditional independence approach, a typical aggre-

gated data set has 60,000 rows of geo data and 50 rows of context

data.Without it wewould have to traverse 60, 000×50 = 3, 000, 000

rows of data even just for these two dimensions.

Estimating cardinality via MinHash is also bene�cial to the re-

sponse time. Firstly, retrieving members of segments containing

millions of devices from database involves reading a large �le. In

contrast, MinHash compresses the device list into 100 integers. Sec-

ondly, computing the size of segment unions is much faster with

MinHash. In experiments on randomly simulated segments aver-

aging 250,000 devices, computing the union of 10 segments using

set operations averaged 791 milliseconds, versus 445 microseconds

for MinHash estimates.

Another impactful assumption is that segment membership can

be estimated independently of geo or context. If we were to in-

stead consider a Cartesian product of segment, geo, and context,

with 75,000 segments in our system, we would be left with an ag-

gregation over essentially the full 100 billion BRQs in our system.

14 Segment MinHashes are loaded to a binary on-disk-hash(ODH) �le which the
micro-service looks up in real time. We could easily host MinHashes in memory if
we want to — the only reason we went with ODH �le is that in an earlier design we
considered Bloom �lters which would be too big to keep in memory.

There are products in themarket that can run aggregations over

data at this scale in a short time. Google’s BigQuery, can aggregate

over an 85-billion-row dataset in between 10 and 100 seconds [16].

A typical production setup of Apache Druid, querying a 50-billion-

row dataset, returns 90% of queries in less than 1 second [22]. An-

other option is to use Apache Parquet[5] for storage and Apache

Arrow[6] for memory.

While these query times may fall in an acceptable range for

users, the operating costs are far beyond those of our solution. Big-

Query is a paid product, and Druid, while free, was set up in the

example case with su�cient Amazon EC2 resources to run 1302

concurrent threads. By contrast, our production deployment con-

sists of two instances (to avoid machine failure) of lightweight Java

micro-service, accessing all of its data either within its 4GB heap

memory or through retrievals from local disk, and running on 8-

core machines. Apache Parquet, on the other hand, requires pre-

processing overhead, namely building the data cube and the asso-

ciated time cost.

8 RELATED WORK

There isn’t muchwork on this problem in literature. Themost com-

parable work we �nd is [21] by GumGum. They too are interested

in the number of advertising opportunities available to their clients.

The di�erence is that they are interested in the avail breakdown

mostly by inventory, whereas we aggregate avail in more granular

dimensions. While we count opportunities and devices by several

dimensions and project them via multipliers into estimated impres-

sions, they count impressions by inventory. They too useMinHash

for count estimation. They maintain the device ids from which the

hashes come, join them back to features on devices and project on

those features before performing their forecast, whereas we main-

tain distinct MinHashes for each segment.

[3] solves a problem that is similar to part of our problem,

namely the segment size estimation. The authors there are inter-

ested in estimating the number of documents matching a query ex-

pressed in terms of boolean operations on substrings. They didn’t

adopt the Bloom �lter method because it requires large storage

space. Instead, they used another technique called min-wise inde-

pendent permutations which needs a collection of hash functions.

Also, since their problem deals with search strings, they use a trie

data structure.

We also �nd that segment-speci�c scale estimation has appli-

cation in the cable TV industry. Modern technology allows for di-

rect data collection from TV subscriber devices and the creation of

more granular segments with size estimates [2]. Audience size esti-

mates allows TV advertising inventory to be divided into subsets,

priced appropriately in advance, and sold to multiple advertisers

for the same show and time slot.

Our problem is di�erent from demand forecasting where the

change of demand over time is more interesting. As an example,

ride share services gain frompredicting demand. In a post to Uber’s

Engineering Blog[11], the authors describe a method to model

total demand for Uber rides over the course of a calendar year.

They developed an approach in which Long Short Term Memory

(LTSM)[9, 10] neural networks were trained on sliding windows of

training data. The ability of the LTSMs to relate information across
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non-consecutive time points as well as to “forget” gave their model

�exibility to predict normal demand as well as demand around un-

usual events such as Christmas Day.

9 CONCLUSIONS AND FUTURE WORK

By dividing the problem into independent steps and using Min-

Hash algorithm and machine learning, we can provide ballpark

accurate avail estimates. The response time of the deployed prod-

uct is fast. We receive positive feedback from users, citing that the

product provides accurate forecasts and is a huge time saver for

campaign budget planning. The product has led to increased rev-

enue.

In the future, we would like to investigate ways to improve

model R2. One idea is to consider adding other parts of the cam-

paign criteria, such as the campaign’s frequency cap which may

impact impression count, to model inputs.

A separate direction is to make the audience segment size es-

timation support other logical combinations of segments, namely

intersections. This would be useful for marketers who want to tar-

get devices in multiple segments simultaneously. We know that

MinHash gives a good estimate on the intersection of two sets as

long as the set overlap is not too small. When the overlap is small,

assuming independence and estimating the joint probability as a

product of probability multipliers could give a better result.

It is noteworthy that the audience size estimation methodology

in this paper is useful for several new products that are under ac-

tive development at Dstillery. One example is the “audience stu-

dio”, where advertisers create their own targeting audiences from

any combination of our existing segments, the product provides

estimations of the sizes of created audiences, and the created au-

diences are then available on our partner buyer’s platform for ad

campaign execution.
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