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ABSTRACT

Every day, billions of online advertising slots are bought and sold

through real time bidding (RTB). In RTB, publishers sometimes

reject bids to deliver ads (impressions) for some brands, due to,

for example, direct deals with other brands. Publishers rarely dis-

close which brands they blacklist to ad buyers. Buyers bidding for a

blacklisted brand waste computing resources in a low latency envi-

ronment and lose an opportunity to show a good ad for a di�erent

brand. Here we describe a dynamic system developed at Dstillery

that detects these (publisher, brand) combinations based on ad auc-

tion win rates and limits bidding for them to the minimum. This

system demonstrates 1) a signi�cant increase in the win rates of

our bids, 2) a sizable reduction of system load, and 3) e�ectiveness

in �nding quali�ed non-blacklisted brands to replace blacklisted

brands to show ads for. The system allows us to deliver more ad

impressions while making fewer bids. In addition, we develop and

demonstrate a methodology of choosing the optimal exploration-

exploitation balance of the problem.
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1 INTRODUCTION

Online display advertising monetizes approximately 50 billion dol-

lars each year. Every day, billions of ad slots are bought and sold

through real time bidding (RTB) on ad exchanges. In RTB, buy-

ers such as Dstillery bid to show an ad on a publisher website (in-

ventory). The ad exchange receives bids from multiple buyers and
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runs an auction to determine who wins the opportunity to serve

an ad to the audience. The resulting ad showing by the winning

buyer is known as an impression. Buyers represent marketers (con-

sumer brands or agencies) and are rewarded for ad campaign per-

formance (more product purchases or service subscriptions) and

scale (more impressions served). For each received bid request (BRQ),

a buyer needs to decide which marketer to bid for this opportu-

nity and the bid price. This is achieved by the buyer’s bidder, a

highly sophisticated system that makes these decisions and bids

in real time. The bidder chooses a marketer based on this oppor-

tunity’s estimated values across multiple marketers’ ad campaigns.

Here valuemeans the probability that the audience will click the ad

(click-through rate CTR) or take an action (conversion rate CVR),

such as purchasing the marketer’s product or subscribing to the

marketer’s service shortly after viewing the ad. These probabilities

are estimated from data using supervised learning algorithms[3].

Typical features of the models include the audience’s web brows-

ing history and the opportunity’s context such as the webpage[8],

geographic location, etc. The design of Dstillery’s model building

and ad targeting system can be found in [10]. The bidder selects

the marketer for which this opportunity is the most valuable and

calculates a bid price based on this value. Bid price is an increas-

ing function of the estimated CTR or CVR, and the relation can be

linear[8] or non-linear[13].

It is commonly believed that the highest bid wins the auction on

exchanges, but there are exceptions. Publishers have blacklists of

marketers for which they refuse to serve impressions, even in cases

where the highest bid for an opportunity is made for such mar-

keters1. This can happen, for example, when the publisher has a

direct deal outside RTBwith one brand (such as Audi) and commits

to not showing ads for competitor brands (other luxury car brands).

Publishers rarely notify buyers which marketers are in their black-

lists. Buyers bidding for a blacklisted marketer waste computing

resources in a low latency environment and lose an opportunity

to show a good ad for a di�erent brand. At Dstillery, we’ve built a

system to automatically detect the content of a publisher’s black-

list (“banned marketers" or “BM") and limit bidding for BMs to the

minimum. The detection is based on win rate (WR), the number of

impressions won divided by the number of bids. For each BRQ, we

retain a list of high value marketer candidates to choose from, so

that if some of these marketers appear in the blacklist, we can bid

for a di�erent marketer. Our BM list is updated daily in accordance

with changes to the publisher’s blacklist. We keep a small fraction

of BRQs una�ected by the �lter (control group), so that we can still

1In this situation, the highest non-blacklisted bid could pay the second highest non-
blacklisted bid in a second price auction.
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make a small number of bids on BMs to record their win rates. Our

results show that, with an appropriately tuned criterion for which

marketers enter the BM list, we 1) increase WR by more than 20%,

2) reduce system load considerably by making fewer bids, 3) often

�nd quali�ed alternative marketers to replace blacklisted ones to

show ads for, and 4) deliver more ad impressions.

This paper is organized as follows: Section 3 describes our bid-

ding process, which is also the data collection process to train our

BM list. Section 4 gives the algorithm/criterion for identifying BMs.

Section 5 shows results on BM list training and validation. Section

6 shows production performance. Section 7 studies the optimal

exploration-exploitation balance in this problem. The methodol-

ogy and equations there are applicable to similar problems.

2 RELATED WORK

There exists plenty of literature on applying machine learning to

problems in online advertising. Most papers focus on buildingmod-

els (for example, [3], [4], [6], [7], and [9]) to predict an opportu-

nity’s value (click-through/conversion probability) and calculating

the optimal bid price (bid optimization) of a BRQ based on model

prediction (for example, [8] and [13]). Other notable topics include

pacing[5], i.e. the allocation of ad campaign budget over a period

of time to achieve smooth delivery while optimizing for perfor-

mance. In contrast, not much attention is devoted to win rates, de-

spite its importance in various aspects of a buyer’s ad bidding. Win

rates naturally enter into consideration in pacing, as treated in [5].

Taking win rates into account when calculating bid prices leads to

better campaign performance[13]. [1], [2], and [12] models market

price, a quantity related to win rate. [14] models a campaign’s his-

torical win rate with a survival model for CTR estimation and bid

optimization. [13] and [14] use continuous parametric functions of

the bid price for win rate prediction in bid optimization. However,

these win rate estimations don’t include publisher as a feature, and

we aren’t aware of any literature pointing out the (exchange, pub-

lisher, marketer) dependency of win rates. Our work is novel in

that it �nds the interaction of publisher and marketer with regard

to win rate and takes advantage of such insights by limiting bid-

ding on marketers that are blacklisted by a given publisher.

3 BIDDING PROCESS

Dstillery makes bids on a number of exchanges. A down-sampled

fraction of bids are fully logged2. The impressions are also logged.

These logs allow us to track down every logged bid and �nd out

whether we win or lose the auction. We apply an algorithm, de-

tailed in Section 4, to this data collected a few days in the past,

to identify a list of BMs on each (exchange, inventory) combina-

tion. Figure 1 shows how the BM list is applied in our bidder. After

we receive a BRQ, we �rst do some pre-processing, such as iden-

tifying the inventory, device, and audience, and applying various

�lters such as a non-human activity (bot) �lter[11]. Next, we �nd

a list of ad candidates to consider for bidding. Each ad candidate

represents a di�erent marketer. Then we apply the BM �lter to all

2Because of the huge number of bids we make every day, logging every bid would be
too costly. All bids presented in this paper refer to logged bids. Bid down-sampling
does not a�ect WR.

Figure 1: BM �lter �ow diagram. Marketers 1, 2, and 3 repre-

sent ad candidates in descending order of bid price.Marketer

1 happens to be in the BM list for this opportunity. If the

BRQ skips the BM �lter (right path), marketer 1 is selected

for bidding. Otherwise (left path), marketer 2 is selected.

but a small fraction of BRQs. When the BM �lter is applied, mar-

keters in the BM list of the (exchange, inventory) combination of

the BRQ are eliminated from consideration, and the highest priced

ad from the remaining ad candidates wins the internal auction and

is submitted for bidding. A small random sample of BRQs skip the

BM �lter and proceed directly to the internal auction. For each of

these BRQs, the highest valued marketer among all candidates is

selected for bidding regardless of any blacklist.

4 BANNED MARKETER IDENTIFICATION
ALGORITHM

The intuition behind the algorithm is to use auction win rates on

exchanges to uncover a publisher’s blacklist. We analyze data on

bids and impressions over the pastT = 8 days. We chooseT = 8 be-

cause marketers may enter and exit a publisher’s blacklist (for ex-

ample, because of the start and end of the publisher’s direct deals),

andT = 8 allows us to detect and react to any drop and increase in

WRs within 8 days. We run the algorithm and refresh the list daily,

and the list is applied in our bidder shortly after being refreshed.
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4.1 General Approach

The WR of a blacklisted marketer’s bids would be lower compared

to other marketers’ bids on the same exchange and publisher at

the same price level. We cannot assume theWR of blacklisted mar-

keters to be strictly zero because we aren’t aware of how other

machines make decisions. We need to consider bid price because

otherwise wewouldmis-identify marketers as banned just because

their bids have lower prices. This leads to the following algorithm.

First, discretize all bids into price buckets. For each (exchange

e , inventory i , marketerm, price bucket p) combination, compute

the expected WR as the aggregated win rate for all marketers m′

on exchange e , inventory i and in price bucket p.

E

[
WRe,i,m,p

]
=

∑

m′ Impse,i,m′,p
∑

m′ Bidse,i,m′,p
. (1)

Next, compute the resulting expected number of impressions

E

[
Impse,i,m,p

]
= Bidse,i,m,p · E

[
WRe,i,m,p

]
. (2)

For amarketer blacklisted by a publisher, the actual number of total

impressions for this (exchange, inventory, marketer) combination,

aggregated over all price buckets,

TotImpse,i,m =
∑

p

Impse,i,m,p (3)

would be much lower than3 the expected number of total impres-

sions

E
[

TotImpse,i,m
]

=

∑

p

E

[
Impse,i,m,p

]
, (4)

and that di�erence is used as the criterion for identifying a mar-

keter as a BM on this (exchange, inventory).4

4.2 The Criterion and Parameter Tuning

TotImpse,i,m is a count. Under the null hypothesis, it follows a

Poisson distribution. Both the mean and variance ofTotImpse,i,m
are equal to E

[

TotImpse,i,m
]

. Instead of computing the p-value of

the Poisson distribution and declaring a BM based on p-value, we

take a simpler approach. We identify a marketer to be a BM if5

TotImpse,i,m < α ·E
[

TotImpse,i,m
]

− β ·

√

E
[

TotImpse,i,m
]

(5)

with appropriate constants α and β to be discussed soon. A choice

of α = 1, β = 3, for instance, would arise if we approxi-

mate the Poisson distribution with a Gaussian and use a 3 stan-

dard deviation rule, which corresponds to a 0.14% p-value. The

3This algorithm is loosely motivated by the χ 2 statistical test. Under the null hypoth-
esis that the marketer in question has the sameWR as other marketers with the same
(exchange, inventory, price bucket) combination, the actual number of impressionswe
win for this (exchange, inventory, marketer, price bucket) combination Impse, i,m,p

should have mean equal to E
[
Impse, i,m,p

]
and variance equal toE

[
Impse, i,m,p

]
.

Hence, the χ 2 statistic for all price buckets,

χ 2
e, i,m =

∑

p

(Impse, i,m,p − E

[
Impse, i,m,p

]
)2

E

[
Impse, i,m,p

]

should follow a χ 2 distribution with degrees of freedom equal to the number of price

buckets. A marketer having Impse, i,m,p ’s lower than E
[
Impse, i,m,p

]
’s and an

extremely large χ 2 value would indicate that it has a signi�cantly lower WR on this
publisher compared to other marketers.
4In our bidding history, we see on average 30 distinct marketers on each (exchange,
inventory) combination.
5The RHS of Equation (5) should be understood as having a �oor sign.

greater E
[

TotImpse,i,m
]

, the more exact the Poisson to Gauss-

ian approximation. With small E
[

TotImpse,i,m
]

, Equation (5) has

the desired property that it won’t identify a marketer as banned

even if TotImpse,i,m is zero. For instance, with α = 1, β = 2,

E
[

TotImpse,i,m
]

needs to be at least 5.9 in order for the RHS of

Equation (5) to be positive. This is consistent with the requirement

of the p-value of Poisson distribution being su�ciently small.

What values of α and β should be used? Experience proves

that α = 1.0 is not a good choice. What matters here is the

business problem, not a purely statistical problem. We want

to detect (exchange, inventory, marketer) combinations with

very low (price-adjusted) WR (BM combinations) because of

publishers’ blacklists. E
[

TotImpse,i,m
]

grows much faster than
√

E
[

TotImpse,i,m
]

at large values of E
[

TotImpse,i,m
]

. Under α =

1.0, if E
[

TotImpse,i,m
]

is large, Equation (5) will be too aggressive

in identifying a marketer as banned. For example, under α = 1.0

and6 β = 3.0, if E
[

TotImpse,i,m
]

= 1000.0, Equation (5) will be-

come TotImpse,i,m < 905. But we shouldn’t put a combination

in BM list if it is expected to win 1000 impressions7 and actually

wins 904. TheWR of this combination being below average by only

about 10% is irrelevant for our blacklisting. A good choice of α

should be less than 1.0. In fact, we choose

α = 0.6 , (6)

β = 1.2 . (7)

With this choice of parameters, the RHS Equation (5) is only posi-

tive if E
[

TotImpse,i,m
]

≥ 7.0 , so a BM combination needs to have

E
[

TotImpse,i,m
]

≥ 7.0 for it to be detected.

5 TRAINING AND VALIDATION

In the previous section, we described an algorithm to detect BMs.

We’d like to verify that we have not over�tted the data and that the

changes in win rates are not so fast that the learning is not e�ec-

tive in execution. In order to validate the algorithm in a way that

re�ects how we intend to execute it in production, we perform an

out-of-time test, i.e. test the BM list on future data. Each BM list

is generated based on data from the past eight days and used in

our system for one single day. Therefore, for validation, we gen-

erate the BM list based on eight days’ data (estimation set) and

monitor WRs for (exchange, inventory, marketer) combinations in

and outside the list on these eight days as well as on the following

day (test set). Since the criterion for making the BM list compares

actual with expected WRs, validation is also based on comparing

actual against expected WRs. Table 1 shows, for both the eight-

day estimation set and one-day test set, the aggregated actual WR

vs. the aggregated expected WR for combinations in and outside

the BM list8. The “Bids" column is the number of bids in each row.

6Under α = 1.0, 3.0 is already a very large choice of β for identifying BMs at small
E
[

Tot Impse, i,m
]

. Under α = 1.0 and β = 3.0, Equation (5) only starts to �nd

BMs if E
[

Tot Impse, i,m
]

≥ 11.0 .
7Combinations with 1000 or more expected impressions in T = 8 days is common.
They contribute more than 50% to our total impressions.
8For example, the aggregated actual WR for combinations in BM list L is

∑

(e, i,m)∈L
∑

p Impse, i,m,p
∑

(e, i,m)∈L
∑

p Bidse, i,m,p
.

Expressions for expected WRs are similar, but with E
[
Impse, i,m,p

]
.
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Table 1: Actual win rate (WR) vs. expected win rate (E [WR])

for (exchange, inventory, marketer) combinations in and

outside the BM list.

Evaluation Set in BM list Bids WR E [WR]

Estimation
False 1.24e9 5.99% 5.31%

True 2.31e8 0.81% 4.49%

Test
False 1.22e8 6.37% 5.75%

True 2.34e7 0.94% 4.12%

The table indicates that in the estimation set, combinations out-

side the BM list have slightly higher actual (5.99%) than expected

WR (5.31%). The same is true in the test set (6.37% vs. 5.75%). Simi-

larly, combinations in the BM list have much lower actual than ex-

pectedWR in the estimation set (0.81% vs. 4.49%) as well as test set

(0.94% vs. 4.12%). These demonstrate the success of our algorithm

in identifying combinations with much lower WRs than expected

and that such trends continue into the future. The algorithm iden-

ti�es 30 thousand BM combinations, and not bidding on them can

considerably reduce the load of our bidder. From the data in Table

1, we can estimate the improved system global WR as a result of

applying the BM �lter. In the test set, if we had only bid for combi-

nations outside the BM list, the global WR would have been 6.37%

on this particular day.

6 IN VIVO PERFORMANCE RESULTS

Having observed good out-of-time validation results, we applied

the algorithm and BM �lter (as illustrated in Figure 1) in produc-

tion. The BM list/�lter positively a�ects our system’s performance

in several aspects.

First, the win rate of the treatment group (the group for which

the BM �lter is applied) is signi�cantly higher than the win rate

of the control group (the group for which the BM �lter is skipped).

Table 2 shows a WR comparison between the two groups for the

�rst two days that the BM �lter is applied in our system9. “Lift"

is the treatment group’s WR divided by the control group’s WR

and is more than 1.20 on both days. During the 4-month period

from �lter deployment to the time of this writing, the BM �lter

has given daily WR lifts of 1.23± 0.03 . One can estimate the treat-

ment group’sWR using the method described at the end of Section

5. The treatment group’s observed WR matches well with such es-

timation. In fact, on average the treatment group’s observed WR is

more than 95% of the estimated value. The small discrepancy exists

because, when the top marketer candidate is �ltered in the treat-

ment group, we bid for an alternative marketer with a lower price

on average compared to bidding on the same exchange and inven-

tory and for the same alternative marketer in the control group10.

Therefore, bids in the treatment group have a lower average WR

compared to outside-BM-list bids in the control group.

9WRs in Tables 2 and 1 di�er because they are WRs on di�erent dates. WR depends
on the bidding competition level in the market.
10As a result, on an average day, the treatment group’s average bid price is lower than
the control group’s by 6%. The average price paid to show an impression, or CPM, is
2% (not 6% because of second-price ad auctions) lower in the treatment group.

Table 2: Global win rates of control and treatment groups for

the �rst two days following BM �lter deployment.

Day Control Group Treatment Group Lift

Day 1 3.37% 4.17% 1.24

Day 2 3.23% 3.96% 1.23

Furthermore, not bidding on combinations in the BM list results

in a 20% to 30% system load reduction in terms of the number of

bids.

Last but not least, when a BM is �ltered, there is a 48% chance

that we �nd a quali�ed alternative marketer to bid in our sys-

tem. This and the WR increase together let us deliver 6% more

net impressions while making 14% fewer net bids (after account-

ing for bids made for the alternative). Finding an alternative mar-

keter helps improve the alternative marketer’s ad campaign perfor-

mance (clicks or conversions). Each campaign has a delivery goal

with respect to the number of impressions, which is smoothly al-

located over the duration of the campaign. Every day, our pacing

engine activates just the right number of highest ranked opportuni-

ties for each campaign tomeet its daily allocation of delivery. In the

absence of a BM �lter, we lose active opportunities to show ads to

quali�ed alternative marketers. Consequently, the pacing engine

has to activate lower ranked opportunities to deliver for the alter-

native marketers, which leads to poorer campaign performance for

them.

7 OPTIMAL EXPLORATION

In this section we present a methodology that is applicable to a

class of similar problems. Our task is to �nd the optimal random

sampling rate to allocate opportunities to the control group. There

is a tradeo� between large and small sampling rates. As a general

principle, the optimal point is where the number of times spent

on exploring bad opportunities, in our case bidding for blacklisted

combinations, is minimal. If the sampling rate is too large, we will

spend too many bids on opportunities that are hard to win. On

the other hand, if the sampling rate is too small, we will not make

enough bids for some banned (exchange, inventory, marketer) com-

binations to make statistically signi�cant judgements about their

quality on a later date, which could result in us bidding on them

later and bidding on them more on average over time. In the ex-

treme case, if the control group sampling rate were zero, we would

make no bids on BM combinations. Sooner or later, the pastT days

would have insu�cient data for the algorithm to detect those BMs,

and consequentlywe could bid heavily on them the next day. There

is an optimal (possibly non-zero) control group sampling rate that

minimizes the number of bids made to a BM combination. We need

exploration11 to help us make fewer bids for BMs.

11A well-known explore-exploit algorithm is UCB1 for the multi-armed bandit prob-
lem. Similar to our approach, UCB1 also explores bad opportunities. Our problem is
di�erent from multi-armed bandit in that 1) we want to block blacklisted marketers
rather than pick the best option, 2) there are more variables in our problem such as
bid price, and 3) a marketer’swin rate can change over time. One may still take a UCB-
like approach for our problem. The equations will be di�erent fromUCB1. Our control
group sampling rate tuning to minimize the "regret" is novel, and our approach may
have a lower regret than a UCB-like approach.
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7.1 Number of Bids Made for a BM

Here we consider an (exchange, inventory, marketer) combination

that has a very low win rate and should be in the BM list. We calcu-

late the total number of bids per day made to this BM combination,

in the control and treatment groups together. Our purpose is to �nd

the control group sampling rate such that this BM combination re-

ceives a minimal number of bids. As we will see, the combination

could be caught in the BM list on some days and escape detection

on other days, resulting in us making fewer or more bids for it on

di�erent days. We will compute the average number of bids made

for it per day.

In order to calculate this, we need to know on which days a BM

combination is caught/not caught by our algorithm. Any criterion

we choose to express

TotImpse,i,m ≪ E
[

TotImpse,i,m
]

(8)

implicitly requires E
[

TotImpse,i,m
]

to be su�ciently large. If

E
[

TotImpse,i,m
]

is too small, we can’t declare it to be a BM even

if TotImpse,i,m is zero. This is regardless of how we choose to ex-

press the condition in Equation (8). In particular, with Equation (5)

as the criterion and the choice of parameters in Equations (6) and

(7), E
[

TotImpse,i,m
]

≥ 7.0 in the past T days is required12. For

E
[

TotImpse,i,m
]

to be su�ciently large, a certain minimal num-

ber of bids (denoted by N ) needs to be made for this BM combina-

tion in the pastT days. In fact, N bids made to a BM should also be

the su�cient condition13 for its detection. Under criterion Equa-

tion (5) and the choice of parameters in Equations (6) and (7), N

depends on the (exchange, inventory, marketer) combination, via

N · E
[

WRe,i,m
]

= 7.0 , (9)

where E
[

WRe,i,m
]

is this marketer’s expected win rate on this ex-

change and inventory, aggregated over all price buckets. Expected

WR in each price bucket is an average over all marketers (see

Equation (1)) and doesn’t depend on the speci�c marketer. Table

1 also indicates that the expected WR aggregated over price buck-

ets doesn’t depend strongly on whether the (exchange, inventory,

marketer) combination is in the BM list. Therefore, we will approx-

imate E
[

WRe,i,m
]

with our globalWR 4% for simplicity. Substitut-

ing this into Equation (9) gives N = 175 . A BM is detected only if

at least N = 175 bids is made for it in the past T = 8 days.

Now we’re ready to compute the average number of bids per

day made for a BM. It turns out that, at a given control group sam-

pling rate, BM combinations belong to three classes depending on

their sizes. Each class of BM has a distinct behavior with regard to

being detected by our algorithm or not. BMs of small size are never

caught by the algorithm, BMs of intermediate size enter and exit

our BM list in a periodic pattern, and BMs of large size will remain

in the BM list every day. Denote by c the control group random

sampling rate. Consider a BM combination that gets ne,i,m bids

per day in the absence of a BM �lter. How often it enters the BM

list depends on ne,i,m. Obviously, if ne,i,m < N /T , the combina-

tion will never enter the BM list, regardless of c . Under this circum-

stance, we will make ne,i,m bids for it every day. On the opposite

12See the end of Section 4 for an explanation of this point.
13Since a BMhas a signi�cantly lower win rate than expected (see Table 1). If wemake
enough bids for it, it has a high chance of meeting the criterion Equation (8) and enter
the BM list.

end, a large BM combination with ne,i,m ≥ N /(c · T ) will always

be caught in the BM list. We will make c ·ne,i,m bids for such a BM

every day. Lastly, BMs of intermediate size, i.e.

ne,i,m ∈ [
N

T
,

N

c ·T
) , (10)

will enter and leave the BM list. For each of them, we’d like to com-

pute the fraction of days it stays in the BM list. Assume without

loss of generality that we turn on the BM �lter on day 1. Since

we’ve made ne,i,m · T ≥ N bids for it from day −(T − 1) to day

0, the algorithm catches this combination on day 1. Let x be the

number of days it remains in the BM list. Because it is in the BM

list on day x , the number of bids made to it in the T days before

day x cannot be smaller than N , i.e.

ne,i,m · (T − x + 1) + c · ne,i,m · (x − 1) ≥ N . (11)

Similarly, because it leaves the BM list on day x + 1, we have

ne,i,m · (T − x ) + c · ne,i,m · x < N . (12)

Solving Equations (11) and (12) for integer x gives

x = 1 +
⌊T − N /ne,i,m

1 − c

⌋
. (13)

In theT days before day x + 2, the number of bids made to this BM

combination is still the same as in theT days before day x + 1 and

thus less thanN . Hence, the combination still won’t be detected on

day x + 2. It is not hard to see that this combination will be outside

the BM list from day x + 1 to dayT + 1. It will re-enter the BM list

on dayT + 2, because in theT days before dayT + 2 it is in the BM

list for (x −1) days. DayT +2 is the beginning of a new (T +1)-day

cycle for this BM with regard to detection. The (T + 1)-day cycle

will keep on repeating itself. Therefore, in a (T +1)-day period, the

combination is in the BM list for x days, and the average number

of bids made per day for this BM combination is

bI (ne,i,m ) =
ne,i,m · (T + 1 − x ) + c · ne,i,m · x

T + 1
, (14)

where x is given by Equation (13). Putting these together, the num-

ber of bids per day be,i,m made to any BM combination is

be,i,m =



ne,i,m if ne,i,m < N /T

c · ne,i,m if ne,i,m ≥ N /(c ·T )

bI (ne,i,m ) otherwise

, (15)

where bI (ne,i,m ) is given by Equation (14). The left plot in Figure

2 shows be,i,m against c for N = 175, T = 8, and ne,i,m = 150.

As c is decreased down to zero (from right to left in the plot), the

two discontinuities (jumps) in be,i,m represent points where the

BM combination transitions from staying in the BM list every day

to leaving the list for 1 out of every T + 1 days and then to leaving

the list for 2 out of every T + 1 days. The number of discontinu-

ities in the plot depends on the parameters (ne,i,m, etc). For this

BM, be,i,m is minimized at 2% (the left discontinuity in the plot).

A di�erent BM combination would have a di�erent optimal c . For

simplicity, we choose a single optimal c for all BMs. This is a re-

striction in our implementation, but it can change if we decide to

be more sophisticated. To �nd this single optimal c , we shall con-

sider all BMs.
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Figure 2: Left: an example of bids per day made for a BM

as a function of control group sampling rate, as calculated

by Equation (15). The parameters are N = 175, T = 8, and

ne,i,m = 150. Right: bids per day made to all BMs against

control group sampling rate, as calculated by Equation (16).

7.2 Minimizing Bids Made for All BMs

Here we �nd all BM combinations and their ne,i,m numbers, com-

pute the number of bids made for each combination, sum them

up, and minimize the sum with respect to c . To identify all BM

combinations, we look at data over a long period of time (20 days)

and apply the criterion in Equation (5). We choose the period to

be before we turn on the BM �lter in our system, so that we have

accurate ne,i,m numbers for the BM combinations. A period of 20

days enables us to collect enough data and detect practically all

true banned combinations. Based on the list of true BMs Lt , along

with the ne,i,m for each of them, we can calculate the be,i,m for

each of them using Equation (15) and sum up these be,i,m’s to get

the number of bids per day make for all BMs, bwasted .

bwasted =

∑

(e,i,m)∈Lt

be,i,m . (16)

We perform this calculation for a range of c’s, and �nd the c that

minimizes bwasted . The right plot in Figure 2 shows the total bid

count bwasted versus di�erent values of c . In our system, the opti-

mal c turns out to be 1%. Setting the control group sampling rate

above 10%, for example, is obviously unnecessary. Setting it to zero

is undesirable, too. In either case, bwasted can be signi�cantly re-

duced by moving c towards its optimal value.

7.3 Generality of the Analysis

The method described in this section has general applications to

a class of problems. In these problems, we want to select good op-

portunities, such as BRQs that we can win, and discard bad oppor-

tunities, such as BRQs that are hard to win. The quality of opportu-

nities could change over time. We infer the quality from data and

exploit the insights. In order to make statistically signi�cant judge-

ments, we need to explore each opportunity at least N times. This

includes exploring known bad opportunities with a probability c .

This section presents a way to �nd the optimal value of c . Assume

we decide on the quality of opportunities based on data in the past

T days14. The number of explorations per day for a bad opportu-

nity is given by Equation (15), where n is the number of times per

day we naturally “see” this opportunity, and subscript (e, i,m) is

understood as an index of the bad opportunity. These equations

are completely general. To �nd an optimal c for a bad opportunity,

one minimizes Equation (15) with respect to c .

8 CONCLUSIONS

In this paper we have detailed an algorithm for identifying con-

sumer brands that certain websites refuse to show ads for on each

ad exchange. Our algorithm improves online ad bidding win rate

by 23%, reduces system load, increases delivery, and improves per-

formance. In addition, we developed and demonstrated a method-

ology of choosing the optimal balance between dedicating oppor-

tunities to exploration and dedicating opportunities to the execu-

tion of insights, where we block bad opportunities. If not enough

opportunities are dedicated to exploration, one will end up taking

more bad opportunities, due to a lack of estimation precision. The

methodology is applicable to a class of problems where the goal

is to identify and block bad opportunities and to react to possible

changes in opportunity quality over time. The equations we ob-

tained are general and based on minimal and reasonable assump-

tions.
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